Подрывные инновации: будущее технологий и общества - страница 2



Ведущим разработчиком ИИ является Джон Маккарти, который ввёл термин «искусственный интеллект» в 1956 году и сыграл важную роль в разработке программ исследования ИИ в Стэнфордском университете и Массачусетском технологическом институте.

Большой вклад в разработку ИИ также внесли: Марвин Мински, который основал Лабораторию искусственного интеллекта в Массачусетском технологическом институте и помог создать область искусственных нейронных сетей, Ричард Саттон, который развивал область обучения с подкреплением, а также Артур Сэмюэл, разработавший первую программу самообучения в 1950-х годах.

В 1980-х и 1990-х годах развитие ИИ продолжилось, увеличилось финансирование, поскольку исследователи добились значительного прогресса в разработке алгоритмов машинного обучения и нейронных сетей. Эти достижения проложили путь для разработки многих широко используемых сегодня приложений ИИ, таких как распознавание речи, классификация изображений и обработка естественного языка.

В последние годы область ИИ продолжала развиваться и расширяться благодаря значительным достижениям в таких областях, как глубокое обучение и обучение с подкреплением. Эти достижения привели к разработке новых продуктов и услуг на основе ИИ, таких как автономные транспортные средства, персональные помощники и интеллектуальные домашние устройства.

Помимо ключевых событий и вех в истории ИИ, следует осветить текущее состояние и тенденции в этой области, определяющие будущие разработки. Одним из ключевых направлений, формирующих будущее ИИ, является внедрение алгоритмов и методов машинного обучения, позволяющих компьютерам учиться на основе новых данных и со временем улучшать свою производительность при выполнении конкретной задачи. Эти алгоритмы становятся все более распространенными в широком диапазоне приложений, они используются для анализа больших наборов данных, прогнозирования и выполнения задач, которые людям было бы трудно или невозможно выполнить самостоятельно. В области машинного обучения количество статей и публикаций в этой области растёт в геометрической прогрессии. Согласно исследованию журнала «AI Frontiers», количество статей, опубликованных на конференциях по машинному обучению, выросло с 50 в 2000 году до более 5000 в 2022 году.

В настоящее время получило своё развитие использование глубокого обучения, представляющего собой тип машинного обучения, который включает использование искусственных нейронных сетей с несколькими уровнями блоков обработки, известных как «нейроны». Эти сети способны обучаться и адаптироваться к новым данным и используются для достижения самых современных результатов в таких областях, как распознавание изображений и речи.

Исследователи работают над созданием общего искусственного интеллекта (AGI), который представляет собой способность машины выполнять любую интеллектуальную задачу, которую может выполнить человек, в то время как современные системы ИИ, как правило, предназначены для выполнения только конкретных задач. Общий ИИ всё ещё находится на ранних стадиях развития, но если он будет реализован, это позволит кардинально изменить повседневную жизнь людей. Исследование консалтинговой компании «Accenture» показывает, что к 2035 году искусственный интеллект может повысить ежегодные темпы экономического роста в развитых странах в среднем на 1,7 процентных пункта, увеличив мировую экономику на 15,7 триллиона долларов.