Популярно о конечной математике и ее интересных применениях в квантовой теории - страница 32



, а смысл имеет только описание преобразования от бесконечно далекого прошлого t→-∞ до бесконечно далекого будущего t→+∞. Тот факт, что S-матрица вычисляется в импульсном представлении, не означает, что в QFT не может быть координатного описания. Оно имеется в приближении когда для каждой частицы имеется оператор координаты в импульсном представлении.

Суммируя обсуждение в этом и предыдущем параграфах, отметим следующее. QFT покоится на двух китах указанных в 1) и 2). То что 1) не является фундаментальным физическим требованием, отмечено в предыдущем параграфе, а в этом параграфе объяснено, что понятие квантованных полей на background space тоже не является фундаментальным. Понятие background space возникло из классической теории поля, а для квантованных полей оно не имеет физического смысла так как аргумент x в квантованных полях не относится к какой-либо частице и поэтому не имеет физического смысла. Нет физического закона, что S-матрица обязательно должна определяться интегралами по d>4x от квантованных полей Ψ(x). Исторически сложилось так, что QFT с такими интегралами хорошо описывает многие экспериментальные данные, но, как описано ниже, такая теория также имеет фундаментальные проблемы. Поэтому нет причин думать, что ultimate quantum theory будет основана на QFT. Этот вопрос обсуждается в следующем параграфе.

9.7. Успехи и проблемы QFT

Как объяснено выше, теория основанная на 1) и 2) не может быть фундаментальной. Но, кроме этой проблемы, в QFT возникает следующая. Теория основана на локальных квантованных полях, которые перемножаются в одной точке. Как правило, физиков не волнует то, что, как отмечено, например, в книге Боголюбова с соавторами [6], Ψ(x) является обобщенной функцией, а, как известно из теории таких функций, их нельзя перемножать в одной точке. Но многие физики об этом даже не задумываются и перемножают, чтобы, как они думают, сохранить локальность, хотя, как отмечено выше, x не относится к какой-либо частице и поэтому не имеет физического смысла. В результате получаются плохо определенные выражения, аномалии и расходимости с которыми борются. То есть, сами создали проблемы и теперь с ними борются.

Можно сказать, что идеальная наука не должна исходить из такой математики. Но здесь возникает убийственный аргумент: с такой математикой теоретический результат для магнитных моментов электрона и мюона согласуется с экспериментом с точностью 8 знаков, Лэмбовский сдвиг – с точностью 5 знаков и т.д. Ни в какой области науки такого согласия теории и эксперимента нет.

Эти результаты были получены в квантовой электродинамике (которую в физической литературе называют QED – quantum electrodynamics) в конце 40х годов, и те, кто ее сделали (Feynman, Schwinger, Tomonaga, Bethe, Karplus, Klein, Kroll, Sommerfield и др.) производят впечатление даже не людей, а сверхчеловеков. Но все же, хотя история не знает сослагательного наклонения, позволю себе задать крамольный вопрос: то, что эти потрясающие результаты были получены оказалось хорошо для науки или нет? Во-первых, эти результаты сразу убедили многих, что строгая математика ни к чему, а главное – чтобы хорошо описывался эксперимент. Во-вторых, многие решили, что теперь вся релятивистская квантовая теория может быть сделана по аналогии с QED. Однако, несмотря на потрясающее согласие с экспериментом, эти результаты вряд ли можно считать фундаментальными. Они получены, исходя из того, что постоянная тонкой структуры α мала (она примерно равна 1/137). Поэтому можно применять теорию возмущений по α. Результат для аномальных моментов электрона и мюона получается при учете поправок вплоть до α