Пострефлекторная нейробиология поведения - страница 7
Рис. 1
Рис. 2.
где д – деполяризующее окончание, г – гиперполяризующее окончание
Предположим теперь, что система лишена специфических контактов:
вся поверхность каждого из трех нейронов наделена одинаковыми секреторными и рецепторными свойствами, отростки контактируют случайным образом, переплетаясь в общем, не разделенном на компартменты, внеклеточном жидком матриксе. Сможет ли такая бессинаптическая система по-прежнему функционировать так, как показано на рис. 1? Сможет – при условии, что каждый из трех нейронов выделяет собственный медиатор и имеет нужный тип рецепторов к медиаторам двух других нейронов.
Если медиаторы клеток А, Б и В обозначим как а, б и в; рецепторы к а, обеспечивающие де- и гиперполяризацию, как соответственно Р>д>а и Р>г>аи т. п., то эту гетерохимическую нейронную систему можно записать следующим образом:
Такая запись содержит столь же полные сведения о специфических связях, обеспечивающих фазировку активности нейронов рассматриваемой системы, как и рис. 2, но содержание этих двух записей существенно различно. Бессинаптическая модель, в отличие от синаптической, составлена из качественно разнородных клеточных элементов (и в этом смысле подобна реальным нейронным системам, которые всегда гетерогенны); это усложнение сопряжено с такими преимуществами, как простота конструкции (неструктурированный, анатомически не упорядоченный нейропиль, плексус и т. п.) и простота управления (медиатор выполняет роль фактора, интегрирующего систему в целом). Интегративную функцию медиаторных веществ, присущую бессинаптической модели, трудно продемонстрировать на высших животных, в мозге которых эта функция может быть разной в разных участках нервной ткани. Вместе с тем у просто организованных животных эта функция может иметь специфическое выражение на поведенческом уровне. Действительно, интеграция поведения медиаторными веществами показана нами и другими авторами для ряда беспозвоночных. Эти данные указывают на близость реальных нервных систем (по крайней мере, у беспозвоночных) к бессинаптической модели.
1986
Поведенческий выбор диктуется трансмиттерным балансом
Нервная система в целом и даже любая локальная нейронная система всегда гетерохимична, т. е. построена из нервных клеток, продуцирующих разные медиаторы. Статья посвящена модели, перспективной для изучения механизмов, посредством которых нейроны, различающиеся по своему медиаторному химизму, объединяются в систему.
О состоянии управляющей системы легче всего судить по конечному результату ее деятельности – поведению животного. В этом отношении удобны просто устроенные нервные системы беспозвоночных, у которых во многих случаях определенным поведением управляют определенные ганглии. Такой ганглий можно в первом приближении принять за локальную нейронную систему. Ганглии беспозвоночных всегда гетерохимичны и у многих форм построены из относительно небольшого числа идентифицируемых нейронов, что делает возможным дальнейший анализ клеточных механизмов наблюдаемого поведения.
Этими преимуществами обладает объект данного исследования – крылоногий моллюск Clione limacinа L. (Pteropoda), у которого, как будет показано ниже, четко представлено явление интеграции поведения индивидуальным медиаторным веществом. <…> Ранее одним из нас было показано, что у <…> клиона, или морского ангела, ритмические машущие движения локомоторных органов – крыльев, или параподиев, управляются автоматическим моторным центром, расположенным в педальных ганглиях, и сохраняются в препарате, состоящем только из крыла и педального ганглия [8]. <…> Свои поиски в этом направлении мы начали с анализа роли двух нейрональных аминов— дофамина и серотонина – в управлении поведением клиона. <…> Представлялось естественным в качестве первой задачи выяснить роль этих медиаторных аминов в поведении, связанном с реальным плаванием. Мы использовали не только сами медиаторы, но и их метаболические предшественники, а также некоторые другие нужные для анализа вещества. Предварительные результаты данной работы были коротко опубликованы ранее [3, 4].