Применение искусственного интеллекта в цифровой экономике - страница 11



При применении возможностей анализа неструктурированных данных с помощью ИИ-сервисов в процессе распространения мобильного контента, в частности сообщений в мессенджерах, электронных писем, фото и видео, осуществляется структурирование сгенерированных данных и сведений в целях получения возможностей их дальнейшей обработки. Указанный принцип заложен в основе работы сервиса Siri, который позволяет разговорной речи с помощью алгоритмов программы структурироваться и подготавливаться к дальнейшему анализу. В системах анализа неструктурированных данных заложен огромный потенциал для производственных и ресурсодобывающих предприятий, которые накапливают массивы смешанной информации в течение долгого периода времени. Такой анализ способен облегчить работу и самих R&D-инженеров, в том числе сэкономить время на сортировку и организацию данных, перед тем как оценить их и выявить важные взаимосвязи.

Искусственный интеллект – это возможность делегировать роботам утомительные и трудоемкие для человека задачи. Например, роботизированный онлайн-ритейлер Ocado разработал систему компьютерного зрения и сеть роботов в целях замены процесса сканирования баркодов на своих торговых складах. Это позволяет ускорить поиск и выдачу нужных товаров. Экспертами прогнозируется мощный рост рынка роботов и искусственного интеллекта в ближайшее десятилетие.

Внедрение искусственного интеллекта в различные бизнессферы начинается, как было показано выше, со сбора и обработки необходимых данных и трансформирования и систематизации их в нужный структурированный вид. Следующим шагом является разработка ИИ-алгоритмов, которые будут способны к самообучению. Здесь необходимы квалифицированные ИТ-специалисты, которые смогут научить систему искусственного интеллекта всем необходимым для компании или бизнеса действиям. Сегодня на рынке создано достаточно большое количество готовых ИИ-решений, которые помогут настроить алгоритмы искусственного интеллекта быстрее и качественнее.

После получения необходимой информации от системы искусственного интеллекта осуществляется перестройка всех технических или бизнес-процессов, на которые оказывают влияние алгоритмы ИИ. На этом этапе, бесспорно, требуется участие не только машин, но и человека. Однако в дальнейшем ИИ сам способен оптимизировать свою работу.

2.2. Перспективные направления развития искусственного интеллекта в бизнес-сфере

Перспективными направлениями применения искусственного интеллекта являются процессы, в которых отслеживаются и повторяются процессы действий человека. Однако разработка и внедрение таких технологий на сегодня не развиты до такого уровня, чтобы заменить человека абсолютно во всем.

Крупными технологическими компаниями получены впечатляющие результаты, связанные с созданием компьютерного зрения, модулей управления движением, понимания речи, организации и предоставления доступа к информации с помощью компьютерного обучения. Среди наиболее популярных применений систем с ИИ следует отметить системы распознавания образов (face recognition), обработки естественного языка и синтеза речи (natural language processing), а также автоматизированные аналитические системы для прогнозирования результатов (predictive analytics). Несмотря на это, современные компании не обладают достаточно надежными интеллектуальными технологиями, которые могут воспроизводить точность работы человеческих глаз или отдельных зон мозга, ответственных за речь.