Природа и свойства физического времени - страница 9
где x – смещение точки из положения равновесия;
a – амплитуда колебания;
ω – циклическая частота;
φ – начальная фаза.
Свободные колебания имеют характеристическое время (период), через которое все элементы движения повторяются:
Для простоты картины будем рассматривать период в радианной мере.
Умножим и разделим выражение для Ŧ>2 на x>2, по-прежнему учитывая, что
Так как и в этом случае сила действует вдоль направления движения, то
где A – работа силы на пути x, равная изменению потенциальной энергии материальной точки.
так как
Заметим, что потенциальная энергия вкладывается в рассматриваемый процесс лишь в течение половины периода Ŧ. Чтобы учесть это, запишем
что совпадает с предыдущим результатом.
в результате получим:
Для окончательной уверенности во всеобщности полученной зависимости решим третью простую задачу динамики, рассмотрев движение физического маятника, колеблющегося вокруг оси.
Определим период колебаний тела с постоянным весом P, центр тяжести которого C расположен на расстоянии r от оси вращения. Угол отклонения тела от положения равновесия φ будем считать малым, когда можно принять
Тогда
Под влиянием этого момента тело приобретает угловое ускорение
где J – момент инерции тела относительно оси О.
Подставляя значения β и M, получим:
Полагая
Полученное уравнение также является уравнением гармонических колебаний с периодом
или в радианной мере
Подставив в уравнение для Ŧ значение ω, найдем:
Умножим числитель и знаменатель выражения на φ>2 и, учитывая также, что
Заметим, что
но
Так как и здесь потенциальная энергия вкладывается в процесс только в течение половины периода, запишем:
В итоге получим:
Сопоставим все три выражения, полученные из трех различных задач динамики:
Поскольку в двух последних случаях за время развития процесса потенциальная энергия полностью переходит в кинетическую и обратно, а в первом случае (при торможении) кинетическая может переходить в тепловую, то есть в процессе могут участвовать различные виды энергии, обобщим найденные зависимости, записав:
где E – сторонняя энергия, участвующая в процессе.
Рассмотрим выражение
Здесь хорошо видно, что масса есть численная характеристика степени противодействия сил инерции работе внешней силы.
В итоге для искомой функции получаем:
где
Ĵ – обобщенный момент инерции;
E – сторонняя энергия.
Заметим, что в нашем случае Е есть сторонняя энергия, относящаяся исключительно к отдельному процессу, рассматриваемому нами изолированно, поэтому ее соотношение с энергиями других процессов принципиально не рассматривается.
Система единиц выбирается всякий раз таким образом, чтобы не пришлось вводить ненужные коэффициенты.
Особо отметим, что момент инерции тела