Происхождение жизни - страница 8



H>9NO>2, однако ни одна из них не является компонентом белковых молекул (Майр, 1981). В связи с этим возник вопрос, почему в состав живого вошли те аминокислоты, которые труднее всего получить путём абиогенного синтеза?

2.3.2 Синтез азотистых оснований. Схожие проблемы возникают и с синтезом азотистых оснований. Например, аденин можно получить из цианистого водорода (HCN) – побочного продукта опытов Миллера и Юри – при облучении электронами полученного от линейного ускорителя газовой смеси, состоявшей из метана, аммиака и воды. Однако при чрезвычайно высоких концентрациях HCN (порядка 0,01 М) выход аденина составляет, по некоторым оценкам, всего 0,04%, причём ни в одной реакции не удалось получить чистый аденин, а лишь его производные (Ferris, 1978; Shapiro, 1995). Другое основание – цитозин при искровом разряде не образуется, а образуются только его предшественники: цианоацетилен и цианоацетальдегид. Однако если в растворе присутствуют, к примеру, аминокислоты, то они охотнее будут реагировать с ними, чем образовывать цитозин. Следовательно, прежде чем начнут накапливаться предшественники нуклеиновых кислот, исчезнут предшественники белков и другие важные соединения. (Кроме этого цианоацетилен с большим «удовольствием» прореагирует с аммиаком и циановодородом, которые в больших количествах присутствуют в колбах Миллера-Юри). Под действием УФ-излучения цитозин быстро разрушается с образованием фотогидратов и фотодимеров циклобутана (Shapiro, 1999). Выделить из конечных продуктов экспериментов, моделирующих первичную атмосферу, другие пурины, кроме аденина, не удалось. Не увенчались успехом и попытки обнаружения пиримидинов (Поннамперума, 1977; Orgel, 2004; Spirin, 2007).

2.3.3 Синтез сахаров. Что касается сахаров, то в опытах, аналогичных таковым Миллера и Юри, не удалось обнаружить даже намёков на их образование (Поннамперума, 1977). Однако был найден формальдегид, потому в качестве возможного способа получения сахаров, в частности рибозы, была предложена реакция конденсации формальдегида. Эта знаменитая реакция Бутлерова (синтез сахаров в слабощелочных водных растворах в присутствии ионов металлов) очень сложная и практически не предсказуемая. Каждый раз получаются самые разные сахара. На практике при непомерно высокой концентрации формальдегида – 0,15 М и выше, выход рибозы составляет менее 1% (Shapiro, 1988). Причём немедленно начинаются побочные реакции с другими сахарами. Из них образуется либо карамель, либо метиловый спирт и мочевина (Мухин, 2009).

Под действием УФ-лучей большая часть формальдегида превращается в пентаэритрит (Schwartz, 1993). Необходимо также учитывать, что сахара не образуются в условиях, при которых синтезируются аминокислоты и азотистые основания (Shapiro, 1984).

Американский биохимик Роберт Шапиро (1935—2011), проделавший в наше время огромное количество специальных экспериментов по абиогенному синтезу рибозы, сделал следующее заключение: «Данные, которыми мы сейчас располагаем, не подтверждают возможности синтеза рибозы в первичном бульоне, за исключением, может быть, кратких периодов, когда она могла появиться в малых концентрациях в составе сложных смесей и в условиях, в которых нуклеозидный синтез невозможен» (Shapiro, 1984).

2.3.4 Устойчивость органических соединений. Все компоненты нуклеиновых кислот по своей природе неустойчивы и легко разрушаются даже в идеальных условиях. Например, период полураспада рибозы при 0°С и рН 7 составляет 44 года, а при 100°С всего 73 минуты (Larralde, 1995). Половина образовавшегося аденина распадается за 80 лет (при 37°С), цитозина – за 340 лет (при 25°С) (Shapiro, 1995, 1999), а при повышении температуры до 100°С сроки их жизни сокращаются до 1 года и 19 дней соответственно (Levy, 1998). Поскольку физико-химические условия в первичном океане были крайне неблагоприятными для оснований и сахаров, то их предполагаемое накопление в течение миллионов лет становится маловероятным.