Простое начало. Как четыре закона физики формируют живой мир - страница 7





4. ДНК – это двойная спираль. Взаимодействия атомов определяют строение молекулы, а строение молекулы обусловливает ее функцию. Любой из четырех нуклеотидов – A, T, Ц, Г – может быть связан с любым другим для формирования одной нити ДНК. Но нуклеотиды также взаимодействуют, хоть и слабее, между нитями, причем весьма характерным образом: A связывается исключительно с T, а Ц – с Г. (Мы говорим, что нуклеотиды в этих парах комплементарны друг другу.) Одна нить ДНК – например, AГЦЦTATГA – связывается со своей комплементарной нитью TЦГГATAЦT[7]. На рисунке ниже показаны атомы ДНК, сформированной из нити AЦTГ и комплементарной ей TГAЦ; тонкими пунктирными перемычками там обозначены межнитевые связи[8]. Благодаря межатомным взаимодействиям нити ДНК, как плющ, обвивают друг друга, образуя двойную спираль. Этот рисунок вторит утрированному «портрету» двойной спирали, который мы видели бесчисленное множество раз: плавно изогнутые ленты и упорядоченные точки призваны чисто схематически передать куда более сложные расстановки атомов и связей, существующие в трехмерном пространстве.

Каноническая двойная спираль ДНК не только изящна, но и функциональна. Две комплементарные нити содержат избыточную информацию: если я сообщу вам последовательность нуклеотидов в одной нити, вы будете знать и последовательность в другой, поскольку каждый нуклеотид комплементарен своему партнеру. Эта избыточность показывает, как информация может переноситься при делении из одной клетки в две дочерние: ДНК «расстегивается», словно молния, и после этого синтезируется комплемент для каждой из исходных цепей, в результате чего из одной двойной спирали ДНК получаются две.

Структуру двухцепочечной ДНК в 1953 году вычислили Джеймс Уотсон и Фрэнсис Крик, опираясь на великолепные рентгеновские снимки Розалинд Франклин и ее студента Рэймонда Гослинга. (Это увлекательная история, полная гениальных прозрений и трагичных этических упущений, но она прекрасно рассказана в других источниках>3.) Прежде никто не знал, как выглядят молекулы ДНК. Весомее прочих выглядела гипотеза Лайнуса Полинга, одного из ведущих исследователей химических связей: он предполагал, что ДНК формирует трехнитевое перекрученное волокно (тройную спираль). После открытия двойной спирали стало ясно, как структура ДНК обеспечивает передачу генетической информации: путем копирования комплементарных цепей. Однако другие следствия такого строения ДНК не столь очевидны, и мы до сих пор продолжаем изучать ее загадки.

В живых клетках, как и в стерильных лабораторных растворах, отдельные нити ДНК самопроизвольно закручиваются в двойную спираль, если содержат комплементарные последовательности нуклеотидов. Для этого не нужны ни внешние строительные леса, ни крепеж: ДНК содержит в себе механизм собственной организации, иллюстрируя принцип самосборки, снова и снова всплывающий при изучении жизни.



Каждый из описанных образов ДНК по-своему полезен и заостряет внимание на характеристиках, важных для исполнения этой молекулой разных ролей. Волокнистая слизь, извлекаемая из размолотых в пюре клеток, может, и неказиста на вид, но ни один из более эффектных способов применения ДНК – выделение из раковых клеток для изучения их геномов, сбор на местах преступлений для вычисления подозреваемых и так далее – не работал бы без учета материальной, физической природы ДНК. Образ абстрактной кодограммы сообщает нам, что информация, содержащаяся в ДНК, определяется последовательностью символов. Когда мы говорим об уникальности ДНК каждого человека, то подразумеваем, что ваша последовательность нуклеотидов, или цветных квадратиков, отличается от моей. (Правда, отличается она незначительно: более 99 % наших квадратиков совпадут.) Когда мы говорим, что знаем геном какого-то организма, то подразумеваем знание полной последовательности его символов. Это сообщает нам о многом, но, как мы увидим, все же оставляет массу неопределенности. Нам важно знать строение ДНК на атомном уровне – точную архитектуру ее атомов, а не только последовательность символов, – например, при разработке инструментов для разрезания и соединения нитей ДНК, о чем мы поговорим в контексте редактирования генома (см. часть III). Но чаще хватает и знания последовательности звеньев A, Ц, Г, T. Двойная спираль описывает, как ДНК располагается в пространстве. Размер, форма, жесткость и электрический заряд двухцепочечной ДНК определяют, как она упакована в клетках и как с нее считывается информация. Чтобы понять важность физической природы двухцепочечной ДНК, рассмотрим для начала процесс, который изменил биотехнологии, –