Puzzle - страница 16
Но почему у скорости и времени такие отношения, почему взаимосвязаны пространство и время? Для виртуального мира ответ напрашивается сам: если скорость света – продукт обработки информации, то мир обновляется с определенной скоростью. Это в триллионы раз быстрее, чем любой супер-компьютер, но принцип тот же: время при росте скорости замедляется, ибо виртуальная реальность зависит от виртуального времени. Когда компьютер подвисает, игровое время тоже немного замедляется. В нашем мире, время замедляется с ростом скорости или рядом с массивными объектами, и этот процесс подозрительно похож. Можно допустить, что в корабле, который несется с огромной скоростью, циклы обработки системы подвисают ради экономии ресурсов.
Третье доказательство. Самое интересное доказательство гипотезы-симуляции – квантовая запутанность. Фотон, летящий в пространстве, можно считать вращающимся, то есть обладающим спином. Вообще-то фотоны не вращаются, но у нас ведь упрощенная модель. Физики считают, что до наблюдения у частицы не бывает конкретного спина. Пока на фотон никто не смотрит, он не может сам определить в какую сторону ему крутится, то есть пребывает в суперпозиции неопределенности. Кажется, будто природе сложно рассчитать вращение каждой частицы, и она использует для этого упрощенную схему. Но стоит появиться наблюдателю, и частица становится более сложной физически, а ее вращение просчитывается.
В предложенном Эйнштейном эксперименте, который должен был проверить на прочность копенгагенскую интерпретацию, получились очень любопытные результаты. Суть дела в следующем: если атом, к примеру цезия, испускает два фотона в разных направлениях, то, из-за закона сохранения импульса, их состояние будет взаимосвязано. Если один вращается снизу вверх, другой будет крутиться сверху вниз. Это и называется квантовая запутанность. Но ведь фотон, до проведения наблюдения, не знает куда ему вертеться. Если факт наблюдения заставил его выбрать один из вариантов, запутанный собрат должен сразу же закрутиться в другую сторону. То есть фактом наблюдения мы влияем на вращение фотона за которым не наблюдали, причем второму фотону требуется не только обрести спин, но и сделать это мгновенно, даже если фотоны разнесены на большое расстояние. То есть, если запутанные фотоны разбежались на разные концы вселенной – эта информация должна долететь до собрата в квадриллионы раз быстрее скорости света, чтобы он мгновенно обрел спин.
Это невероятно. К тому же, это нарушает законы физики, ведь ничто не может двигаться быстрее фотонов в вакууме. Однако второму фотону все-таки удается получить информацию в мгновенье ока. Но как он, с такой скоростью, узнает, что над собратом произвели наблюдение и он вращается в какую-то определенную сторону? Эйнштейн был уверен, что такая мгновенная связь невозможна и предполагал, что, когда запутанные фотоны вылетают из атома, они уже содержат информацию о спине и знают, как будут вращаться, если или когда над ними произведут наблюдения. То есть наблюдатель не меняет, а узнает спин частицы. Но через 17 лет, после смерти Эйнштейна, выяснилось, что гений в этом случае ошибся.
Чтобы доказать наличие или отсутствие у частицы информации о том, в какую сторону ей вращаться после наблюдения, ирландский физик Джон Бэл поставил весьма сложный и хитроумный эксперимент. В итоге Бэл доказал, что до наблюдения частица, даже запутанная, не знает как станет крутиться. Рандомный выбор спина получается строго после измерения. То есть запутанные частицы могут передавать друг другу информацию гораздо быстрее скорости света. Эксперимент преподнес больше новых вопросов, чем ответов.