Пятое измерение. Исследование природы времени - страница 3
Иллюстрация 3. Эксперимент со стаканом
Вращение ладони до возврата руки в первоначальное состояние требует разворота ладони на 720°. Спин человека 1/2
Собственный момент импульса – это не момент вращения, спин человека, как и спин элементарных частиц, нельзя свести исключительно к способностям вращения. Эксперимент с кручением руки приведен здесь лишь как наиболее простой и объективный способ определения спинового числа. В повседневной жизни возможности причудливых кульбитов спина 1/2 мы почти не используем, нам гораздо проще поворачиваться на 180° или 360°. Отсюда следует, что спин человека – величина переменная, подверженная флуктуациям.
Человек, как высокоорганизованная живая материя, разумеется, отличается от всей прочей материи. Однако эти различия не так уж и непримиримы. Помимо зеркальной симметрии физическая система человека обладает еще одним общим свойством с физической системой элементарных частиц – наличием внутреннего момента импульса.
Учитывая, что спин – это очень важная, но исключительно квантовая характеристика, малообъяснимая в рамках классической физики, нам нельзя пройти мимо запутанного квантового мира.
Квантовые фокусы
Понятию «квант» (от лат. Quantum – «сколько») физика обязана Максу Планку, который в 1900 г. предложил гипотезу о том, что энергия, излучаемая нагретыми телами, не является непрерывным потоком, как в теории Ньютона, а распространяется дискретными пакетами, названными им квантами. Он рассчитал размер этих пакетов и выразил его через константу – постоянную Планка h, которая равна 6,6 × 10>-34 Дж·с и иногда называется «квантом действия». В силу своей микроскопической величины эта фундаментальная константа проявляет себя только в мире частиц, не оказывая какого-либо значимого влияния на макрообъекты.
Пока еще малоизвестный Альберт Эйнштейн, занимавшийся в это время специальной теорией относительности, применил квантовую теорию Планка к свету и показал, что свет – это не просто волна, одновременно это еще и частицы, кванты энергии. Позднее кванту света было присвоено имя – фотон. Свет состоит из фотонов, которые создают вокруг себя электромагнитное поле, являющееся волной.
Физиков удивила странная двойственность света, но настоящее потрясение они испытали, когда выяснилось, что электрон, всегда считавшийся твердой частицей, тоже ведет себя как волна. В экспериментах пропущенный через две щели пучок электронов рисовал не две вертикальных полосы, что логично было бы для частиц, а сразу группу полос, что было типичной картиной при интерференции волн. Даже когда запускали электроны по одному, картина не менялась – словно один электрон проходил через две щели сразу. Мало того, оказалось, что электроны способны пропадать и вновь появляться в другом месте, что было совершенно невозможно представить! Если электрон обладает волновыми свойствами, тогда что возмущает среду, в которой существует эта волна? Что колеблется? А если электрон – частица, то как он может в одно и то же время находиться в двух местах?
Ответ дал Макс Борн в 1926 году, заявив, что колеблется вероятность нахождения электрона в данной точке. Невозможно точно и наверняка определить, где находится электрон. Единственное, что мы можем знать, – это вероятность его нахождения. Идею закрепил Вернер Гейзенберг, сформулировав свой знаменитый принцип неопределенности, легший в основу квантовой теории. Принцип гласит, что одновременно знать точно импульс (произведение массы на скорость) и местоположение электрона невозможно. Математически он выражается соотношением неопределенности по формуле, где погрешность измерения координаты, умноженная на погрешность измерения импульса, всегда должна быть больше или равна постоянной Планка. Это накладывает ограничение: если мы точно определяем месторасположение частицы, то не можем точно знать ее скорость. И наоборот: определив скорость, мы получаем неопределенность с координатами.