Разбрасываю мысли - страница 46



[Розенталь, 1980]. Набор этих постоянных необходим и достаточен для существования нашего Мира. Показано, что даже небольшое изменение одной из физических постоянных при неизменности остальных и при сохранении всех физических законов приводит к невозможности существования основных устойчивых связанных состояний: ядер, атомов, звезд, галактик [там же]. Устойчивость структур не делает мир неизменным. Представление о гравитационном коллапсе, ставящее вопрос о судьбе самой Вселенной, свидетельствует о том, что физика оказалась перед лицом более грандиозного, чем когда-либо ранее, прогноза [Мизнер, Торн, Уилер, 1977]:

В эпоху коллапса Вселенная превращается, преобразуется, переходит или, наконец, воспроизводится вероятностным образом от одного цикла истории к другому… Вселенная время от времени сжимается до такой степени, что «проходит сквозь игольное ушко», полностью «перерабатывается» и вступает в новый динамический цикл (т. III, с. 483–484).

Мы не будем рассматривать здесь гипотетические высказывания о существовании множества Вселенных со своими физическими законами и своими сочетаниями физических постоянных, или представление о том, что Вселенная прошла через множество циклов, в начале которых физические постоянные менялись. Важно, что мы живем в цикле, где существует устойчивая комбинация констант[61], задающая существование основных состояний. Можно говорить о гармонии Вселенной, вводя представление о «принципе целесообразности» в отборе констант или даже о «биологическом отборе констант» (см. [там же, с. 487]). Может быть, наша Вселенная является не более чем случайно выбранной из множества существующих вселенных? Но ясно одно: именно наша Вселенная в силу ее структурной устойчивости оказывается удобной для описания ее дифференциальными уравнениями. Такая Вселенная, упорядоченная ограничительными постоянными, встает перед нами как структура из иерархически упорядоченных осцилляторов.

Иное положение дел в биосфере. Там мы имеем дело с множеством миров – каждая большая экосистема является одним из таких миров. Эти миры, в отличие от физических вселенных (если они существуют во всем их возможном многообразии), не имеют четких границ – они находятся в непрерывном взаимодействии (в физике вопрос о взаимодействии вселенных порождает, кажется, неразрешимые проблемы). В биологических мирах нет чего-то аналогичного фундаментальным физическим постоянным – или, если они даже и есть, то в силу своей крайней размытости они не наблюдаемы. Нет в биологии и аналога основных устойчивых связанных состояний[62] – не является же таким состоянием биологический код? И если в биосфере нет устойчивых связанных состояний, то что можно там описывать через дифференциальные уравнения? Последние являются языком, удобным для описания изменчивости лишь в некоторой структурно устойчивой системе. Обращаясь к дифференциальным уравнениям, мы исходим из весьма жесткой посылки, утверждающей, что изучаемый мир настолько хорошо организован, что он состоит из устойчивых структур, поддающихся алгоритмическому описанию. В современной физике это уже не мир лапласовского детерминизма – этот мир может содержать вероятностные явления, но они не должны нарушать некой фундаментальной устойчивости. Скажем, в квантовой механике пси-функция вероятностна по своей природе, но ее изменение регулируется дифференциальным уравнением Шрёдингера, содержащим фундаментальную постоянную – постоянную Планка. Само представление о хорошей организованности Мира не поддается четкому определению, но оно хорошо разъясняется из сопоставления мира физического с миром живого. События, происходящие в мире физическом, натянуты на устойчивые в своих численных значениях фундаментальные постоянные