Ритм Вселенной. Как из хаоса возникает порядок - страница 15



Таким образом, в случае трех осцилляторов мы получаем квадрат возможных начальных условий: одна ось для осциллятора B и одна для осциллятора C. Обратите внимание, что для A нам не нужна ось, поскольку этот осциллятор всегда стартует с нуля (в соответствии с тем, как мы решили стробировать эту систему).




Картина постепенно проясняется. По мере добавления осцилляторов нам необходимо добавлять все больше измерений, чтобы можно было учитывать все возможности. Для четырех осцилляторов требуется трехмерный куб начальных условий; для пяти осцилляторов требуется четырехмерный гиберкуб, а в общем случае для n осцилляторов требуется (n–1) – мерный гиберкуб. Людям, далеким от математики, это может показаться чересчур сложным (все это действительно сложно представить себе). Но с точки зрения формального математического подхода, вообще говоря, все равно, какому числу в каждом конкретном случае соответствует n: увеличение n не предполагает возникновения каких-либо новых сложностей. Поэтому, для большей определенности, в дальнейшем я продолжу рассматривать случай с тремя осцилляторами, который заключает в себе все основные идеи.


Очередной шаг заключается в преобразовании рассматриваемой нами динамики – эволюции такой системы во времени – в графическое представление, которое мы стремимся получить. Мы хотим убедиться в том, что в такой системе действительно будет достигнут синхронизм при неких начальных состояниях осцилляторов B и C.

Представим, что произойдет, если мы позволим такой системе начать работать. Напряжение на всех осцилляторах поднимется до порогового значения, они запустятся, а затем вернутся в исходное (нулевое) состояние; они также будут реагировать на «толчки» со стороны других осцилляторов. Чтобы устранить избыточную информацию, опять воспользуемся методом стробов: предоставим системе возможность работать в темноте до очередного момента, когда осциллятор A запустится и вернется в исходное состояние, а B и C отреагируют на это. Затем включим строб и сделаем очередной фотоснимок, зафиксировав новые позиции B и C.

Геометрический результат заключается в том, что старая точка в нашем квадрате оказалась на новом месте (обновленные напряжения B и C). Иными словами, динамическая эволюция нашей системы эквивалентна преобразованию, в результате которого любая данная точка в нашем квадрате оказывается в другом месте этого квадрата в соответствии с неким сложным правилом, которое определяется формой кривой заряда и величиной толчков.

Этот процесс можно повторить; при этом новую точку можно интерпретировать как начальную, которая изменяет свою позицию в соответствии с упомянутым преобразованием, снова и снова перепрыгивая с одного места в нашем квадрате на другое место. Если такая система должна в конечном счете прийти к синхронизму, то упомянутая нами точка должна постепенно продвигаться в сторону нижнего левого угла квадрата, то есть к точке с напряжениями (0,0); это означает, что все осцилляторы достигнут исходного положения одновременно. (Почему именно нижний левый угол? Потому что именно в этой точке находится осциллятор A. Согласно определению строба, осциллятор A уже запустился и сбросился, поэтому напряжение на нем равно нулю. В синхронизированном состоянии напряжение на обоих других осцилляторах также равно нулю.)

В принципе, у каждой начальной точки есть некое конечное положение, которое можно вычислить. Если в конечном счете все осцилляторы запускались синхронно, то такую начальную точку мы называли «хорошей». В противном случае мы называли ее «плохой». Нам с Ренни не удалось найти способ, который позволял бы нам точно сказать, какие точки являются «хорошими», а какие – «плохими», однако нам удалось доказать, что почти все точки являются хорошими. Плохие точки действительно существуют, но они встречаются настолько редко и настолько сильно разбросаны, что если собрать их все вместе, то занимаемая ими площадь стремится к нулю. Иными словами, если выбрать какую-либо точку произвольным образом, то у вас чрезвычайно мало шансов выбрать плохую точку.