Шанс есть! Наука удачи, случайности и вероятности - страница 2



с, сделав его плоским и однородным.

Это неплохо объясняет некоторые характеристики нашей Вселенной, которые плохо поддавались трактовке. Но самое любопытное здесь то, что инфляционное поле, пусть и практически однородное, не было совершенно идентичным для каждого кусочка пространства. Причина этого – случайные квантовые флуктуации: они делали пространство чуть более плотным в одном месте и чуть менее плотным – в другом. Тут нам повезло: полная однородность сделала бы Вселенную совсем другой, неинтересной и почти наверняка безжизненной. Случилось так, что один из этих случайных микроскопических квантов шума, усиленных гравитацией, в итоге вырос в гигантское сообщество галактик и их скоплений, именуемое Сверхскоплением Девы. Среди множества его участков – малопримечательный всклокоченный куст, который мы именуем локальной группой. В ней-то и располагается Млечный Путь – наш дом.

Мы знаем все это благодаря тому, что астрономы, вглядываясь в глубины космоса, способны различить пестрый узор космического фонового микроволнового излучения. Это своего рода моментальный снимок процесса роста и объединения, в ходе которого первые стабильные атомы образовались спустя примерно 380 тысяч лет после Большого взрыва. Вариации в этом узоре кажутся совершенно случайными и произвольными. Большинство физиков полагают, что породившие сей узор квантовые флуктуации не имели под собой вообще никакой причины. Иными словами, среди всех счастливых случаев этот – наиболее случайный.

Потом появилась материя. Весьма необычайным кажется уже то, что она вообще существует: космос легко мог бы обойтись без нее. Тогда он просто представлял бы собой скучный океан излучения. Дело в том, что после первоначального расширения Вселенная все же продолжала оставаться невообразимо горячей и плотной. Она была наполнена частицами материи и антиматерии – электронами, позитронами, кварками, антикварками и другими. И все они сновали в ней без всякой определенной цели. Стабильные союзы между частицами, способные порождать звезды, планеты и жизнь, возникнут лишь где-то в отдаленном будущем. И, что тревожнее всего, частицы материи и антиматерии присутствовали в этой смеси в равных количествах (как могло бы показаться проходящему мимо наблюдателю). А значит, ситуация была очень опасная.

Если верить стандартным теориям, вещество и антивещество появились после Большого взрыва в одинаковых количествах. Поскольку при контакте они взаимно аннигилируют, порождая пары фотонов высокой энергии, в сегодняшнем космосе должно было бы существовать лишь одно совершенно неинтересное излучение. Для того чтобы мы с вами могли существовать, что-то – материя или антиматерия – должно было победить: нельзя создать планету или человека из света.

К счастью, было нечто, которое, судя по всему, благоприятствовало созданию материи в самый критический момент – в первые мгновения после Большого взрыва. Небольшого избытка материи по отношению к антиматерии (всего одной лишней частицы вещества на миллиард) было достаточно, чтобы в конце концов привести к сегодняшнему положению дел, когда во Вселенной так много материи. Но как же мог возникнуть такой дисбаланс?

Хотя в некоторых взаимодействиях элементарных частиц и наблюдается своего рода диспропорция в пользу материи, она все же слишком незначительна, чтобы создать даже столь небольшое преимущество. Поэтому физики предполагают, что в ранней Вселенной должен был возникнуть какой-то более сильный дисбаланс (как следствие пока неведомых процессов, лежащих за пределами Стандартной модели физики частиц), где доминировали частицы с высокими энергиями.