Шелест гранаты - страница 30
В процессе разделения уранов есть много общего с хроматографией. Сначала их природную смесь переводят в газообразное состояние, соединяя с фтором, потом – прокачивают через бесчисленные пористые перегородки, так что молекулы гексафторида более легкого изотопа постепенно опережают тяжелые. Обогащенный легким изотопом газ собирают и выделяют из него металл. Разделение идет медленно, потому что массы (235 и 238 единиц), а значит, и скорости теплового движения этих изотопов урана различаются незначительно.
Более эффективен процесс их разделения в центрифугах (рис. 2.4), работа которых напоминает отжимание белья в стиральных машинах, но автор воздержится от описания демонстрационного опыта, поскольку при этом возможен выход из строя ценного в любой семье аппарата. Да, к тому же, и метод газовой диффузии применяется до сих пор.
Puc. 2.4
Слева, вверху: уран – серебристый на свежем изломе металл, который на воздухе сначала покрывается налетом цвета спелой сливы, а затем и вовсе чернеет. Ниже: центрифуга, предназначенная для разделения газообразных гексафторидов урана. Справа: цех центрифуг на заводе под Екатеринбургом.
Желающие могут прикинуть, через сколько центрифуг (ступеней разделения) проходят газы, пока будет выделен достаточно «облегченный» гексафторид. Из разделенных газов опять получают металлические ураны: «оружейный» и «отвальный»
Заводы, где из природного урана извлекают легкий изотоп, занимают площади в многие квадратные километры. Миллиарды долларов расходуются, чтобы разделить «близнецов», неотличимых ни по внешнему виду, ни химическим анализом. Но их ядерные «характеры» – совершенно разные.
Процесс деления U>238 – «платный»: прилетающий извне нейтрон должен «принести» с собой энергию более МэВа. A U>235 «бескорыстен»: для возбуждения и последующего распада от пришедшего нейтрона ничего не требуется, вполне достаточно его энергии связи в ядре (рис. 2.5). При попадании нейтрона в способное к делению ядро, образуется неустойчивый «компаунд», но очень быстро (через 10>-23 – 10>-22 секунды) такое ядро разваливается на два осколка, неравных по массе и испускающих новые нейтроны (по 2–3 в каждом акте деления, процесс этот вероятностный), и, благодаря им, со временем может «размножаться» число делящихся ядер – эта реакция называется цепной. В U>235 цепь развивается, а кинетическая энергия осколков деления на много порядков превышает выход энергии при любом акте химической реакции, в которой состав ядер не меняется.
Продукты деления нестабильны и еще долго «приходят в себя», испуская излучения самых различных видов, в том числе – те же нейтроны. Короткоживущими осколками нейтроны испускаются спустя 10>-16-10>-14 секунды после развала компаунд-ядра и такие нейтроны называют мгновенными. Но некоторые нейтроны испускаются через вполне ощутимое человеком время (до десятков секунд). Эти нейтроны называют запаздывающими, доля их по сравнению с мгновенными мала (менее процента).
Рис. 2.5
В ядерной физике оказалась весьма плодотворной модель «жидкой капли», в соответствии с которой действие внутриядерных сил приводит к явлению, напоминающему поверхностное натяжение. Возбужденное попаданием нейтрона в U>235 компаунд-ядро U>236 не разваливается сразу, в нем сначала образуется перетяжка (верхний рисунок), а затем происходит деление на осколки, как правило, неравной массы. Процесс этот – вероятностный, а пример показывает, что делящаяся в первом поколении, растянувшаяся «капля» вот-вот распадется на ядра бария и криптона. Из образовавшихся после распада трех мгновенных нейтронов деления один (в центре) «промахнулся», а два других – положили начало второму поколению, с образованием пар цезия и рубидия, ксенона и стронция. На графике – сечения реакции деления U