Системная инженерия – 2022 - страница 11
Если вы хотите изменить мир хоть неживой, хоть живой, хоть в небольших масштабах, хоть в больших – вы должны будете предположить функцию вашей системы, описать конструкцию, изменить физический мир, чтобы реализовать конструкцию, а потом подстраивать получившуюся систему к непрерывно меняющимся условиям, причём делать это на множестве системных уровней на множестве масштабов времени. Неважно какими вы словами это называете, насколько различны те системы, которые вы затрагиваете своими изменениями мира к лучшему, и насколько сильны традиции работы с этими системами (в этих традициях может что-то не учитываться из всего перечисленного, они же именно «традиции», поэтому могут не учитывать знаний современной инженерии). Вы должны всё это делать, и делать на многих масштабах/системных уровнях как вещества, так и масштабах времени (эксплуатация, один жизненный цикл системы или фичи, эволюция как множество жизненных циклов). Поэтому такой подход и называется системной инженерией, а не просто инженерией. Безмасштабность и непрерывность просто характеризуют её современное состояние, отвечающее третьему поколению системного мышления, появившемуся по историческим масштабам совсем недавно, в десятые годы 21 века.
Инженерия и эволюция
Как соотносятся инженерия и эволюция? Технический прогресс/техноэволюция, которая делается инженерами – это просто часть эволюции? Или это не эволюция, а просто инженерия, «практика агентов-людей с приданными им компьютерами»? Как об этом думать? Участвуют ли инженеры в эволюции, или они и есть эволюция, или эволюция сама по себе, а инженеры творят сами по себе, вне эволюции?
Думать об этом нужно как об эволюции через интеллект (evolution through intelligence). Инженеры реализуют эволюционный алгоритм, но в этом алгоритме есть оптимизации, связанные с использованием интеллекта как общего мастерства решения самых разных проблем, которые не встречались раньше, подробней это раскрывается в курсе «Образование для образованных»8.
Как описывалось в курсе «Практическое системное мышление», во вселенной действует эволюционный физический процесс, который можно представить как (вполне деятельное, то есть физичное) оптимизационное вычисление, биологическая/дарвиновская эволюция тут часть этого общего эволюционного физического процесса. Алгоритм эволюции как оптимизационного вычисления кратко для случая биологии выражается в центральной догме молекулярной биологии9: в ходе эволюции обязательно появляется медиа с возможностью цифровой записи информации репликаторов. Цифровая запись гарантирует точную многократную репликацию без накопления ошибки (в случае аналоговой записи ошибки накапливаются, точная репликация становится невозможной).
На цифровом носителе в ходе эволюции записываются программы генотипа (речь на Земле идёт о ДНК и отчасти РНК, которые хранят информацию в цифровой форме), затем эта цифровая информация разворачивается в уже аналоговый фенотип, и далее она проходит от генов через проявления в фенотипе на уровень популяции – в том числе разделение на два пола, стайный образ жизни, особенности воспитания детей, поведения по терраформированию (например, строительство плотин бобрами) и т. д.
Это (от генотипа к фенотипу и далее, включая популяционные уровни и даже социальную эволюцию, включая техноэволюцию) прямой ход накапливающегося в ходе эволюции оптимизационного знания, приводящего к меньшему влиянию сюрпризов окружающей среды на агентов/IPU. А вот назад в гены полученный в ходе жизни организмов и популяций опыт идёт совсем другим способом, симметрия тут нарушена: в гены удачные модификации попадают только в ходе мутаций, и если они хороши, то репликация оригинала с мутацией дальше происходит, а если не очень хороши, то не происходит, ибо фенотип (вместе с его популяцией, если она оказалась недостаточно разнообразна в части мутаций) вымирает.