Специфика взаимодействия тонкого и наноуровней микроструктурной организации веществ и их влияние на свойства материалов. Монография - страница 9
где n>A и n>B – числа атомов, образующих молекулу.
Таким образом, Полинг сформулировал зависимость полярности связи только от энергии химической связи, найденной из теплоты, выделяемой при реакции в виде термохимической концепции электроотрицательности атомов.
Вместе с тем, основная идея Полинга – зависимость энергии связи только от теплоты, выделяемой при реакции – требует корректировки. Очевидно, что энергия связи в немалой степени зависит и от её длины [46].
Вслед за Полингом термомеханические расчёты были произведены рядом авторов, из которых можно сделать вывод, что увеличение положительной валентности повышает ЭО атомов [47,48].
Другое направление расчёта ЭО – исходя из величин ковалентных радиусов (r>К). Например, Оллред и Рохов [49,50] разработали альтернативный метод расчёта, исходя из эффективного заряда и r>К атома:
ЭО, как по Полингу, так и по Оллреду, как правило, безразмерные величины.
Пирсон [51,52] предложил шкалу абсолютной ЭО, которая определяется как среднее из первого потенциала ионизации и сродства к электрону для нейтрального атома. Обе последние величины были взяты Пирсоном в электрон-вольтах (эВ), следовательно, и значения абсолютной ЭО получились в электрон-вольтах, в то время как в других шкалах ЭО есть величины безразмерные [51,52].
Анализируя все известные на сегодня шкалы ЭО, можно заметить их недостатки. Оригинальная шкала Полинга ограничена валентными состояниями атомов с максимальной «нормальной» валентностью. Тем не менее, в пределах области своей применимости формальный подход Полинга является стройной логически замкнутой феноменологической теорией [45].
Сироткиным О. С. и д.р. [53] была разработана скорректированная шкала ЭО, лишенная недостатков шкал Полинга и Оллреда-Рохова, то есть было устранено присутствие элементов с одинаковыми значениями ЭО за счет использования не только ковалентных, но и металлических радиусов, а также других характеристик основных элементов ПС [53] (табл. 2).
1.5.2. Практическое использование электроотрицательностей
ЭО элементов традиционно используются для определения типа гетероядерной химической связи [54,55]. Их использование базируется на концепции поляризации химической связи, усиливающейся по мере увеличения разности ЭО элементов (ионов), образующих данное соединение. Эта концепция базируется на как будто весьма очевидном допущении – увеличение разности ЭО приводит к «перетягиванию» локализованного электронного облака связывающих электронов к более электроотрицательному элементу. Но этот подход не учитывает металлическую составляющую гетероядерной химической связи, которая в общем случае должна рассматриваться как ионно-ковалентно-металлическая. Необходимость учитывать «степень металличности» (С>М) в соединениях отметили Музер и Пирсон [56,57—59]. Однако в последующие годы на это обстоятельство обращали внимание лишь отдельные исследователи [51, 60, 61—64], тогда как подавляющее число авторов оставались на ортодоксальных поляризационных позициях рассмотрения ХСв, ограничивая ее вариации определением степени ионности (С>И) (степени ковалентности (С>К)), считая ее прямо зависящей только от разности ЭО атомов (ионов), образующих то или иное определенное вещество.
Также от ЭО зависит такая фундаментальная характеристика ХСв, как ее С>К, а, следовательно, прочность связи, тип структуры, особенности химического состава. ЭО в сочетании с другими факторами является решающей в формировании конкретных значений большинства физических и физико-химических свойств. С