SSWI: алгоритмы и практические примеры. Алгоритмы и коды, практические примеры - страница 32



Код будет зависеть от выбранного языка программирования и используемых алгоритмов оптимизации и моделей прогнозирования. Вот пример общего шаблона кода на языке Python

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error

from scipy.optimize import minimize


# Шаг 1: Подготовка данных

# Загрузка временных значений SSWI, параметров и временных меток

sswi_data =…

alpha_data =…

beta_data = …

gamma_data = …

delta_data = …

epsilon_data = …

timestamps = …


# Шаг 2: Разделение данных

# Разделение набора данных на обучающий и тестовый наборы

x_train, x_test, y_train, y_test = train_test_split(

np.column_stack((alpha_data, beta_data, gamma_data, delta_data, epsilon_data)),

sswi_data,

test_size=0.2,

shuffle=False

)


# Шаг 3: Оптимизация параметров

# Определение функции ошибки для оптимизации

def error_function(params):

alpha, beta, gamma, delta, epsilon = params

sswi_predicted = (alpha * beta * gamma) / (delta * epsilon)

return mean_squared_error(y_train, sswi_predicted)


# Начальные значения параметров

initial_params = [1.0, 1.0, 1.0, 1.0, 1.0]


# Оптимизация параметров с использованием метода minimize

optimized_params = minimize (error_function, initial_params, method=«Nelder-Mead’).x


# Шаг 4: Построение модели прогнозирования

# Использование оптимальных значений параметров для модели прогнозирования

alpha_opt, beta_opt, gamma_opt, delta_opt, epsilon_opt = optimized_params


# Шаг 5: Тестирование производительности модели

# Прогнозирование значения SSWI на тестовом наборе данных

sswi_predicted_test = (alpha_opt * beta_opt * gamma_opt) / (delta_opt * epsilon_opt)


# Оценка ошибки прогнозирования на тестовом наборе

mse_test = mean_squared_error (y_test, sswi_predicted_test)


# Шаг 6: Использование оптимальных значений параметров

# Использование оптимальных значений параметров для прогнозирования будущих значений SSWI


# Вывод результатов

print («Оптимальные значения параметров:»)

print (f"Alpha: {alpha_opt}»)

print (f"Beta: {beta_opt}»)

print(f"Gamma: {gamma_opt}")

print (f"Delta: {delta_opt}»)

print (f"Epsilon: {epsilon_opt}»)

print("Ошибка прогнозирования на тестовом наборе данных:", mse_test)


Обратите внимание, что в этом коде используется библиотека scikit-learn для разбиения данных на обучающий и тестовый наборы, а также для оценки ошибки прогнозирования (MSE). Также используется функция minimize из библиотеки SciPy для оптимизации параметров с использованием метода Nelder-Mead.

Алгоритм прогнозирования изменений в SSWI с использованием машинного обучения

Алгоритм прогнозирования изменений в SSWI с использованием машинного обучения предоставляет инструменты для прогнозирования будущих значений SSWI и изменений в SSWI на основе предыдущих данных и состояний параметров α, β, γ, δ, ε.

Эти алгоритмы основаны на моделях машинного обучения, таких как регрессионные модели или нейронные сети, которые обучаются на исторических данных, чтобы выявить закономерности и связи между параметрами и изменениями в SSWI.

Построение модели машинного обучения позволяет захватить сложные зависимости между параметрами и изменениями в SSWI, что может быть сложно обнаружить с помощью простых аналитических методов.

Прогнозирование изменений и будущих значений SSWI на основе обученной модели позволяет получить важную информацию для стратегического планирования, контроля и управления системами, которые зависят от синхронизированных взаимодействий в ядрах атомов.