SSWI: алгоритмы и практические примеры. Алгоритмы и коды, практические примеры - страница 35
– Обучить модель прогнозирования на обучающей выборке, используя исторические данные SSWI и соответствующие параметры.
– Протестировать производительность модели на тестовом наборе, оценивая точность и остаточные ошибки прогноза.
– Использовать обученную модель для прогнозирования будущих значений SSWI на основе последних или будущих значений параметров α, β, γ, δ, ε.
Алгоритм прогнозирования будущих значений SSWI на основе временных рядов
1. Сбор временных данных:
– Собрать временные данные о значениях SSWI, параметров α, β, γ, δ, ε и соответствующих временных метках.
2. Построение модели прогнозирования временных рядов:
– Выбрать модель прогнозирования временных рядов, такую как ARIMA, SARIMA или LSTM нейронную сеть.
– Применить выбранную модель для прогнозирования будущих значений SSWI.
3. Разделение данных:
– Разделить данные на обучающий и тестовый наборы, используя временные метки для определения точки разделения.
4. Обучение модели прогнозирования:
– Обучить модель прогнозирования на обучающем наборе данных, используя исторические значения SSWI и соответствующие параметры α, β, γ, δ, ε.
5. Тестирование производительности модели:
– Протестировать производительность модели на тестовом наборе данных, оценивая точность прогноза и остаточные ошибки прогноза.
– Сравнить прогнозные значения SSWI с фактическими значениями для оценки точности модели.
6. Прогнозирование будущих значений:
– Использовать обученную модель для прогнозирования будущих значений SSWI на основе последних или будущих значений параметров α, β, γ, δ, ε.
Таким образом, алгоритм прогнозирования будущих значений SSWI на основе временных рядов позволяет настроить модель, чтобы она могла прогнозировать будущие значения SSWI на основе предыдущих данных о параметрах α, β, γ, δ, ε. Это может быть полезно для планирования, управления и принятия решений в системах, где SSWI играет важную роль.
Код будет зависеть от выбранной модели прогнозирования временных рядов. Вот пример общего шаблона кода на языке Python для прогнозирования временных рядов с помощью SARIMA модели
import pandas as pd
from statsmodels.tsa.statespace.sarimax import SARIMAX
# Шаг 1: Сбор временных данных
# Загрузка временных значений SSWI, параметров α, β, γ, δ, ε и временных меток
data = pd.read_csv (’data. csv’)
timestamps = data [’timestamp’]
sswi = data['sswi']
alpha = data['alpha']
beta = data['beta']
gamma = data['gamma']
delta = data['delta']
epsilon = data['epsilon']
# Шаг 2: Построение модели прогнозирования временных рядов
# Создание SARIMA модели с подходящими параметрами (p, d, q)(P, D, Q, S)
model = SARIMAX(sswi, order=(p, d, q), seasonal_order=(P, D, Q, S))
# Шаг 3: Разделение данных
# Определение точки разделения между обучающим и тестовым набором данных
train_size = int (len (sswi) * 0.8)
train_sswi = sswi[:train_size]
test_sswi = sswi [train_size: ]
train_alpha = alpha[:train_size]
test_alpha = alpha [train_size: ]
train_beta = beta[:train_size]
test_beta = beta [train_size: ]
train_gamma = gamma[:train_size]
test_gamma = gamma[train_size:]
train_delta = delta [:train_size]
test_delta = delta[train_size:]
train_epsilon = epsilon [:train_size]
test_epsilon = epsilon[train_size:]
# Шаг 4: Обучение модели прогнозирования
# Обучение модели SARIMA на обучающем наборе данных
model.fit(train_sswi, exog=train_alpha)
# Шаг 5: Тестирование производительности модели