Становление и развитие экономической теории. Том 2 - страница 2



, поскольку при количестве Q>n прибавка к общей прибыли (маргинальная прибыль) равна прибавке общих издержек (маргинальные издержки). То есть, MR=MC при количестве Q>n. Альтернативным, но равноценным образом, собственник с нулевыми издержками на производство просто максимизирует общую прибыль, при количестве Q>n, как можно видеть на Рис. 12–1b. В случае нулевых затрат, кривая TR становится функцией прибыли π>0

Монопольная модель собственника минерального источника, обременённого положительными затратами на производство, ясно обнаружила «маргинальный принцип», который является центральным организующим принципом экономической теории. Излагаем задачу в виде вопроса: если монополист сталкивается с затратами на производство, какую цену он назначит и какое количество будет он продавать, чтобы максимизировать прибыли? Предположив, что ϕ(D) равнялась затратам на изготовление некоторого количества литров, равного D, уравнение прибыли Курно приобретает вид π=pF(p) – ϕ(D). Максимизация прибыли требует, чтобы наклон функции прибыли был равен нулю – или, в системе обозначения Курно, чтобы D + dD/dp{p – d[ϕ(D На более простом языке, максимизация прибыли происходит, если MR – MC = 0. Как это изложил Курно: «В каком бы изобилии не находились источники производства, производитель всегда остановится, если увеличение затрат превышает увеличение прибылей» («Математические принципы»). В ссылке на Рис. 12–1а, Курно установил, что прибыли достигают своего максимума там, где MR=MC. Количество произведённых изделий будет Q>c, а цена будет P>c, далее, Q>c будет ниже, а P>c выше, чем с случае с нулевыми издержками. В качестве альтернативы этой трактовке, теорию монополии Коурно можно трактовать как на Рис. 12–1b, который воспроизводит общие затраты, общую прибыль и функцию прибыли, относящуюся к владельцу минерального источника. Этот владелец прекратит производство при Q>c но Рис. 12–1b, где функция прибыли π>1 в максимуме (Курно включил второе условие – чтобы наклон функции прибыли был равен нулю при Q>c и, далее, чтобы прибыль уменьшалась безотносительно к тому, увеличивается или уменьшается количество). Отметим, что минеральный источник эксплуатируется не с тем, чтобы максимизировать валовую прибыль в точке Q>n, но с тем, чтобы довести до максимума чистую прибыль в точке Q>c. Склонный мыслить в терминах геометрии читатель определит, что в точке Q>c наклон функции ТС равен наклону функции TR, или MC= MR, как на Рис. 12–1а. Одним словом, Курно с его развитием теории монополии выигрывает в сравнении с любым современным писателем учебников, так как современные писатели о монополии объясняют именно теорию Курно.


Анализ дуополии Курно. Возможно, самая знаменитая из развитых Курно теорий относится к введению ещё одного продавца минеральной воды. В своей глубоко оригинальной теоретической концепции, Курно подготовил почву для множества важных для экономики идей, таких как несовершенная конкуренция и теория игр. И хотя теория Курно о дуополии (два продавца) позже была изменена и усовершенствована англичанином Фрэнсисом И. Эдджуортом и французским математиком Жозефом Бертраном, ничто не может скрыть блестящее и острое проникновение Курно в суть рассматриваемого предмета.

Курно рассматривал двух продавцов, А и В, которые оба знают общий (совокупный) спрос на свой совершенно однородный продукт, минеральную воду. В противном случае, у них совершенно отсутствует информация о политике продаж друг друга до такой степени, что А думает, что В будет выпускать одно и то же количество воды, независимо от того, что делает А, а В думает то же самое о выпускаемом А количестве воды. Далее, оба продавца продолжают делать это предположение не взирая на то, что их опыт свидетельствует