Stream Art. Новое в живописи - страница 4
Основное
Даже весьма простые поля скоростей жидкости способны создать чрезвычайно сложные структуры. В некоторых задачах о перемешивании желательно, чтобы выявлялись самые тонкие детали образующейся структуры.
Например, при моделировании потока в прямоугольной полости поле скоростей, вычисленное обычным образом, может оказаться слишком неточным для выявления деталей вытянуто-складчатой структуры. Оно оказывается практически бесполезным для точного нахождения координат, определяющих сложное поведение хаотических потоков. Кроме того, вычисление поля скоростей в задаче о перемешивании – это только начальная стадия.
По этой причине исследование процесса перемешивания проводилось в основном на весьма схематичных потоках (описываемых уравнениями, которые в некоторых случаях могут быть решены точно), а не на более близких к реальности системах, для которых может быть получено лишь приблизительное решение. Действительно, приблизительные решения «потоковых» уравнений часто служат источником ложных эффектов, отсутствующих в реальной задаче о перемешивании жидкостей.
Даже компьютерное моделирование простых потоков, которые мы проводили, часто приводило к непреодолимым трудностям. Компьютер представляет жидкость как совокупность дискретных элементов. При этом окрашенная капля может состоять из сотен тысяч элементов, и количество операций, выполняемых компьютером в процессе слежения за ее хаотическим поведением при перемешивании, может быть огромным.
Чтобы проследить за поведением всех полос в областях хаотического перемешивания даже в случае простого примера, потребовалось бы 300 лет машинного времени на компьютере с быстродействием миллион операций в секунду. Несомненно, можно оспаривать необходимость детального слежения за отдельными элементами структуры, считая более оправданным рассматривать структуру статистически. Но не будет ли это означать признания поражения? Если поле потоковых скоростей (или «движение») точно известно, то зачем обращаться к статистическим методам?
Таким образом, новые теоретические исследования нуждаются в объединении с хорошо поставленными экспериментами, поскольку, вероятнее всего, простые вычисления не могут дать ответ на многие вопросы, касающиеся хаотических потоков. Например, каким образом должны двигаться стенки полости с жидкостью для того, чтобы размеры островов не смешанной краски (включая и вновь образующиеся) стали меньше некоторой заданной величины? Ответ на этот вопрос позволил бы в будущем создать весьма тонкую систему, которая могла бы анализировать структуру смешивающейся жидкости, обнаруживать «острова» и менять поток так, чтобы они смешивались с остальной жидкостью.
Ограничения и трудности.
Однако до создания такой тонкой системы предстоит еще многое узнать о свойствах реальных потоков. Хотя описанные выше эксперименты и компьютерное моделирование дают представление об общих свойствах процесса перемешивания, они представляют собой примеры лишь идеальных систем. При анализе этих потоков, например, не учитывается инерция. Иными словами, поток останавливается сразу же, как перестают двигаться стенки полости. В результате в таком потоке не происходят характерные процессы, наблюдаемые при периодическом течении.
В любом фиксированном месте нашей экспериментальной камеры наблюдатель скорее увидел бы одно и то же периодически повторяющееся движение жидкости вместо непериодического и непредсказуемого распределения скоростей, которое порождается турбулентным потоком. Однако именно турбулентность делает перемешивание сливок в кофе с помощью ложки (система с относительно большим числом Рейнольдса) более легким, чем смешивание двух красок шпателем (система с малым числом Рейнольдса).