Сверхдержавы искусственного интеллекта - страница 2
Когда китайские инвесторы, предприниматели и чиновники объединяют усилия для развития какой-либо отрасли, результаты действительно могут потрясти мир. В наши дни Китай вкладывает огромные средства в научные исследования и поддержку предпринимательства, связанного с ИИ. Деньги для стартапов в области ИИ поступают от венчурных инвесторов, технологических гигантов и китайского правительства.
Китайские студенты заразились лихорадкой ИИ и тоже начали принимать участие в научных программах и слушать лекции международных исследователей со своих смартфонов. Основатели стартапов всерьез взялись за реинжиниринг или просто ребрендинг своих компаний, чтобы оседлать эту новую волну.
Менее чем через два месяца после того, как Кэ Цзе проиграл свою последнюю игру AlphaGo, Государственный совет КНР выпустил смелый план по развитию и внедрению ИИ, чтобы догнать и перегнать США[3]. Он требовал большого финансирования, политической поддержки и координации на государственном уровне. Были поставлены четкие задачи, которые предстоит выполнить к 2020 и 2025 годам, и обозначена главная цель – к 2030 году сделать Китай центром глобальных инноваций в области искусственного интеллекта, играющим ведущую роль в сфере теоретических разработок, технологии и внедрения. К 2017 году китайские венчурные инвесторы уже отреагировали на призыв, вложив в стартапы рекордные суммы, составившие 48 % всего венчурного финансирования ИИ в мире[4]. В этом отношении они впервые обогнали США.
Игра по новым правилам
Эту волну государственной поддержки в Китае породила новая парадигма в отношениях между искусственным интеллектом и экономикой. На протяжении десятилетий наука об искусственном интеллекте развивалась медленно, но устойчиво, и только в последнее время начала бурно прогрессировать, позволяя быстро внедрять научные достижения. Задачи технического характера, связанные с победой машины над человеком в игре го, мне хорошо знакомы. Будучи аспирантом Университета Карнеги – Меллона, я занимался разработками в области ИИ под руководством одного из первых его исследователей – Раджа Редди. В 1986 году я написал первую программу[5], победившую чемпиона мира по игре «Отелло» (это упрощенная версия го, в которую играют на доске, разлинованной на 88 клеток). В то время я мог по праву гордиться таким результатом, но сама технология не была настолько зрелой, чтобы найти применение где-либо, кроме простых настольных игр.
То же самое можно сказать и о победе компьютера Deep Blue, созданного IBM, над чемпионом мира по шахматам Гарри Каспаровым в матче 1997 года, который называли «последним рубежом обороны человеческого мозга». После него многие забеспокоились, не пойдут ли роботы войной на человечество, но реальные последствия ограничились подорожанием акций IBM. Искусственный интеллект еще долго находил весьма ограниченное применение, и ученым понадобились десятилетия, чтобы сделать действительно фундаментальный шаг вперед.
Deep Blue действовал «грубой силой», полагаясь в основном на аппаратное обеспечение, которое позволяло быстро просчитывать и оценивать последствия каждого хода. Поэтому, чтобы дополнить его программное обеспечение направляющими эвристиками, понадобилась помощь сильнейших реальных шахматистов. Да, победа была выдающимся достижением инженерной мысли, но в ее основе лежала давно устоявшаяся технология, которая работала только при соблюдении множества условий. Заберите у Deep Blue геометрически простую квадратную шахматную доску восемь на восемь квадратов, и эта машина уже не покажется вам такой умной.