Технология кровельных и гидроизоляционных материалов - страница 4
Q – период релаксации.
Таким образом, удлинение материала без разрывов будет зависеть от жесткости Е и времени релаксации Q.
Прочностные свойства характеризуют способность материала не разрушаясь сопротивляться внутренним напряжениям, возникающим под воздействием механических, тепловых и других факторов. Для ГИМ прочность выражается пределом прочности при разрыве, сжатии, сдвиге, пределом упругости и т.д.
Эти величины являются условными, т.к. зависят от методики испытания материалов и, как правило, не учитывают продолжительности действия нагрузки.
Если для ГИМ с кристаллизационной структурой эти условные показатели хрупкого разрушения можно считать достоверными вследствие огромных периодов релаксации, то в отношении вязко-пластичных материалов при испытании следует учитывать фактор времени.
В случае нехрупко-пластичного разрушения образца обычно определяют лишь условный предел прочности, принимая за него величину частного от деления нагрузки, при которой происходит нарастание деформаций без увеличения усилия (регистрируется на шкале силоизмерителя), на площадь начального поперечного сечения образца в форме цилиндра или призмы. Полимеры испытывают при температуре 20 °C.
Изучая кинетику развития деформаций при постоянной нагрузке или кинетику развития напряжений при постоянных деформациях, получают числовые данные для построения реологических кривых в системе координат ε/σ, где ε – градиент скорости деформации.
По реологической кривой устанавливается предельное напряжение сдвига σ>к, соответствующее пределу текучести материала.
Сопротивление материала ударному действию нагрузки измеряется количеством работы, затрачиваемой на разрушение образца, принятого по стандарту, отнесенной к единице его объема (кг·см/см>3) или к площади поперечного сечения (кг·см/см>2).
σ>s – предел упругости; σт – преде л текучести; σ>р – предел прочности
Рисунок 6 – График предельных напряжений
где σ – напряжения; ε – деформации; η – текучесть
Рисунок 7 – Реологическая кривая
Твердость – способность материала сопротивляться проникновению в него других, более твердых тел. Метод определения твердости основан на вдавливании в испытуемый образец стального шарика или на перемещении по поверхности образца специального твердого наконечника (индентора). Мерой твердости служит отношение нагрузки к площади отпечатка.
Гибкость – для рулонных ГИМ определяется путем огибания вокруг бруска с криволинейной поверхностью образцов-полосок стандартной ширины на угол 180° при определенной температуре. Качество оценивают по нарушению сплошности материала при изгибе.
Технологические свойства или удобообрабатываемость также отражают механические свойства. Основные среди них – подвижность смесей, жесткость их, уплотняемость, укрывистость.
2.2.3 Свойства, характеризующие долговечность материала
Под ними понимают способность материала сохранять, не изменяя свою структуру, а в ряде случаев упрочнять ее со временем за счет процессов старения. Основными дестабилизирующими факторами являются вода, колебания температуры, климатические и биологические факторы.
Набухаемость – способность материала увеличиваться в объеме при насыщении водой. При этом наблюдается поглощение гигроскопичной (пленочной) воды. Это сопровождается раздвижкой отдельных структурных частиц. При последующем высыхании наблюдаются усадочные явления и восстановление структуры, но не полное. Многократное набухание и высыхание сопровождаются разрушением материала.