Теорема века. Мир с точки зрения математики - страница 28
Если по соседству находится чувствующее существо, его впечатления будут изменены благодаря перемещению предмета, но оно будет в состоянии восстановить их в прежнем виде, передвигаясь само надлежащим образом. Достаточно, чтобы в результате система, состоящая из предмета и чувствующего существа, рассматриваемая как одно тело, испытывала одно из тех особых перемещений, которые я назвал неевклидовыми. Это возможно, если допустить, что члены этих существ расширяются по тому же закону, что и другие тела заселяемого ими мира.
Хотя с точки зрения нашей обычной геометрии тела окажутся после такого перемещения деформированными и различные их части отнюдь не возвратятся в прежнее относительное расположение, но мы увидим, что впечатления чувствующего существа окажутся теми же.
В самом деле, если взаимные расстояния различных частей и могли измениться, тем не менее части, бывшие вначале в соприкосновении, опять будут в соприкосновении. Следовательно, осязательные впечатления не изменятся. С другой стороны, если учесть гипотезу о преломлении и кривизне световых лучей, мы убедимся, что и зрительные впечатления останутся прежними.
Итак, наши воображаемые существа должны будут, как и мы, классифицировать наблюдаемые ими явления и выделить из них «изменения положения», которые можно компенсировать соответственным волевым движением.
Если они создадут геометрию, то она не будет, подобно нашей, изучением движений наших неизменных твердых тел; это будет наука об изменениях положения, изменениях, которые они выделят в особую группу и которые будут представлять не что иное, как «неевклидовы перемещения». Это будет неевклидова геометрия.
Таким образом, такие же существа, как мы, воспитание которых происходило бы в подобном мире, имели бы геометрию, отличную от нашей.
Мир четырех измерений. Так же, как неевклидов мир, можно представить себе мир четырех измерений.
Чувство зрения, даже при единственном глазе, в соединении с мускульными ощущениями, сопровождающими движения глазного яблока, могло бы оказаться достаточным для познания пространства трех измерений.
Образы внешних предметов рисуются на сетчатке, которая является картиной двух измерений; это – перспективные изображения.
Но так как эти предметы, а также и наш глаз, подвижны, то мы последовательно видим различные перспективные изображения одного и того же тела, схваченные с нескольких различных точек зрения.
В то же время мы убеждаемся, что переход от одного перспективного изображения к другому часто сопровождается мускульными ощущениями. Если переходы от перспективы А к перспективе В и от перспективы А’ к перспективе В’ сопровождаются одними и теми же мускульными ощущениями, то мы сближаем их между собой как операции одной и той же природы.
Изучая затем законы, по которым сочетаются между собой эти операции, мы убеждаемся в том, что они образуют группу, которая имеет такую же структуру, как и группа движений неизменных твердых тел.
Но мы видели, что именно из свойств этой группы мы извлекли понятие геометрического пространства и пространства трех измерений.
Мы понимаем, таким образом, как идея пространства трех измерений могла возникнуть из наблюдения этих перспективных изображений, хотя каждое из них имеет только два измерения; дело в том, что они следуют друг за другом по определенным законам.
Теперь таким же образом, как на плоскости можно сделать перспективное изображение фигуры трех измерений, можно сделать изображение фигуры четырех измерений на экране трех (или двух) измерений. Для геометра эта задача в высшей степени простая.