Теорема века. Мир с точки зрения математики - страница 34
Предположим теперь, что вместо предыдущих фактов мы наблюдали, что можно опять-таки наложить αβγ последовательно на AGO, BGO, CGO, DGO, EGO, FGO, АНО, ВHО, СHО, DHО, EHО, FHО, а потом можно αβ (отнюдь не αγ) наложить последовательно на АВ, ВС, CD, DE, EF и FA.
Вот опытные факты, которые можно было бы наблюдать, если бы неевклидова геометрия была правильна и если бы αβγи OABCDEFGH были неизменяемыми твердыми телами: первое – в форме прямоугольного треугольника, а второе – в форме двойной правильной шестигранной пирамиды соответствующих размеров.
Итак, эти новые факты невозможны, раз тела движутся, следуя евклидовой группе; но они стали бы возможны, если бы допустить, что тела движутся подобно группе Лобачевского. Их было бы, следовательно, достаточно (если бы они наблюдались), чтобы убедиться, что рассматриваемые тела не движутся, следуя евклидовой группе.
Таким образом, не вводя никакой гипотезы о форме и природе пространства, об отношениях тел к пространству, не приписывая телам никакого геометрического свойства, я нашел факты, позволяющие мне показать, что доступные опытам тела в одном случае движутся, следуя структуре группы Евклида, в другом – следуя структуре группы Лобачевского.
Однако нельзя сказать, что первый ряд фактов может составить опыт, доказывающий, что пространство является евклидовым, а второй – опыт, доказывающий, что пространство неевклидово.
В самом деле, можно было бы представить себе тела, движущиеся таким образом, что они осуществляют второй ряд фактов. Доказательством служит то, что любой механик мог бы их построить, если бы он захотел взять на себя этот труд и если бы придавал этому значение. Однако из этого вы не заключили бы, что пространство неевклидово, тем более что обыкновенные твердые тела продолжали бы существовать и тогда, когда механик построил бы странные тела, упомянутые мною: так что пришлось бы даже заключить, что пространство является одновременно евклидовым и неевклидовым.
Предположим, например, что мы имеем большую сферу радиуса R и что температура убывает от центра к поверхности этой сферы по закону, о котором я говорил, описывая неевклидов мир.
Мы могли бы иметь тела, расширением которых можно было бы пренебречь и которые вели бы себя как обыкновенные неизменяемые твердые тела; с другой стороны, мы могли бы иметь тела очень растяжимые, которые вели бы себя как неевклидовы твердые тела. Мы могли бы иметь две двойные пирамиды OABCDEFGH и O’A’B’C’D’E’F’G’H’ и два треугольника αβγ и α’β’γ’. Первая двойная пирамида была бы прямолинейной, вторая – криволинейной; треугольник αβγ был бы сделан из нерастяжимого, а треугольник α’β’γ’ – из очень растяжимого вещества.
Тогда можно было бы обнаружить первый ряд фактов с двойной пирамидой ОАН и треугольником αβγ и второй – с двойной пирамидой О’А’Н’ и треугольником α’β’γ’. И тогда опыт, по-видимому, убеждал бы сначала, что евклидова геометрия истинна, а затем – что она ложна.
Таким образом, опыты относятся не к пространству, а к телам.
8. Добавление. Для полноты мне следовало бы еще сказать о вопросе очень тонком, который потребовал бы подробного развития; я ограничусь здесь только резюмированием того, что я изложил в «Revue de Métaphysique et de Morale» и в «The Monist». Что мы хотим сказать, когда говорим, что пространство имеет три измерения?