Теорема века. Мир с точки зрения математики - страница 60
Множество явлений повинуется закону пропорциональности – почему? Потому что в них встречается какая-нибудь весьма малая величина. Выведенный из наблюдений простой закон является в этом случае лишь применением общего аналитического правила, по которому исчезающе малый прирост функции пропорционален приросту независимой переменной. Так как в действительности наблюдаемые нами приросты не бесконечно малы, а только очень малы, то закон пропорциональности является лишь приближенным и простота – кажущейся. То же самое применимо к правилу суперпозиции малых движений, столь плодотворному по своим применениям и образующему, между прочим, основу оптики.
А сам закон Ньютона? Простота его, так долго остававшаяся скрытой, быть может, просто кажущаяся. Кто знает, не лежит ли в основании управляемых им явлений некоторый сложный механизм (может быть, соударения тонкой материи, возбужденной беспорядочными движениями), и не есть ли простота этого закона лишь следствие игры средних величин и больших чисел? Во всяком случае, трудно удержаться от мысли, что истинный закон содержит добавочные члены, которые делаются значительными на малых расстояниях. Если в астрономии ими можно пренебрегать сравнительно с основным членом, так что здесь закон Ньютона является во всей своей простоте, то это имеет место лишь вследствие огромности небесных расстояний.
Нет сомнения, что если бы наши методы исследования становились все более и более проникающими, то мы открывали бы простое под сложным, потом сложное под простым, потом опять простое под сложным и т. д., причем невозможно было бы предвидеть, каково будет последнее звено. Где-нибудь да необходимо остановиться; и чтобы наука была возможна, надо остановиться, когда мы пришли к простоте, Простота – единственная почва, на которой мы можем воздвигнуть здание наших обобщений. Но если эта простота только кажущаяся, то будет ли такая почва достаточно надежной? Это – вопрос, заслуживающий исследования. Итак, рассмотрим, какую роль играет в наших обобщениях уверенность в простоте. Пусть мы установили, что некоторый простой закон подтверждается для достаточно большого числа отдельных случаев; тогда мы отказываемся допустить, что такое удачное совпадение было простой случайностью, и заключаем отсюда, что закон этот должен быть верен вообще.
Кеплер заметил, что все наблюденные Тихо Браге положения одной из планет лежат на одном и том же эллипсе. Ему ни на мгновение не приходит мысль, что благодаря странной игре случая Тихо смотрел на небо как раз в те моменты, когда истинная траектория планеты пересекала этот эллипс.
В таком случае не все ли равно, реальна ли простота или за ней скрывается сложная истина. Пусть простота будет следствием влияния больших чисел, которое сглаживает индивидуальные различия, или пусть она зависит от малости некоторых величин, позволяющей пренебрегать некоторыми членами, – как бы то ни было, она не случайна. Реальна ли эта простота или призрачна – она всегда имеет причину. Мы можем рассуждать таким образом всегда, и если простой закон был подтвержден большим числом отдельных наблюдений, то у нас есть законное право предположить, что он и впрямь будет верен в аналогичных случаях. Отказаться от этого – значило бы для нас приписать случайности недопустимую роль.
Однако имеется одно отличие. Простота реальная, глубоко коренящаяся, устояла бы перед увеличением точности наших измерительных средств. Если бы мы считали природу простою в основе, мы должны были бы сделать заключение от простоты приближенной к простоте строгой. Так прежде и поступали; но мы больше не имеем на это права.