The Wonders of Arithmetic from Pierre Simon de Fermat - страница 33



If axioms regulate the count, then they are primary in relation to it. However, there is no need to determine their essence through the introduction of new notions because the meaning of any axioms is precisely in their primacy i.e., they are always essentially the boundaries of knowledge. Thus, axioms receive an even more fundamental status, than until now when they were limited only to the foundation of any separate system. In particular, the system of axioms, developed by the Italian mathematician Giuseppe Peano, very closely correspond to the solution of the problem for constructing a counting system although this main purpose was not explained apparently with a hint on justification the essence the notion of number. The scientific community perceived them only as a kind of “formalization of arithmetic” completely not noticing that these axioms in no way reflect the essence of numbers, but only create the basis for their presentation by default i.e. through a count.

If the main content of axioms is to determine the boundaries of knowledge related to generally accepted methods of representing of numbers, then they should be built both from the definition the essence of the notion of number and in order to ensure the strength and stability of the whole science's building. Until now, due to the lack of such an understanding of the ways of building the foundations of knowledge, the question about the essence of numbers has never even been asked, but only complicated and confused.

Pic. 32. Giuseppe Peano



However, now when it becomes clearer and without any special difficulties, all science can receive a new and very powerful impetus for its development. And then namely on such a solid basis, science acquires the ability to overcome with an incredible ease such complex obstacles, which in the old days, when there was no understanding the essence of numbers, they seemed to science as completely impregnable fortresses36.

3.2. Axioms of Arithmetic

3.2.1. Axioms of a Count

This path was first paved at the end of the 19th century by Peano axioms.37 We will make changes to them based on our understanding the essence of the number.

Axiom 1. A number is natural if it is added of units.38

Axiom 2. The unit is the initial natural number.

Axiom 3. All natural numbers form an infinite row, in which each

following number is formed by adding unit to the previous number.

Axiom 4. The unit does not follow any natural number.

Axiom 5. If some proposition is proven for unit (the beginning of

induction) and if from the assumption that it is true for a natural

number N, it follows that it is also true for a natural number

following N (induction hypothesis), then this sentence will be true

for all natural numbers.

Axiom 6. In addition to natural numbers, there can exist another

numbers derived from them, but only in the case if they possess all

without exception the basic properties of natural numbers.

The first axiom is a direct consequence from definition the essence of number, so Peano simply could not have it. Now this first axiom conveys the meaning of defining the notion of number to all another axiom. The second, fourth, and fifth axioms are preserved as in Peano version almost unchanged, but the fourth axiom of Peano is completely removed from this new system as redundant.