Трилогия ума: Научите ребенка думать по-новому. Восхождение от рассудочного мышления к разуму и мудрости - страница 11



В заключение каждой темы учитель предлагает детям найти в окружающем мире примеры противолежащих понятий. Например, учитель объясняет классу, что обозначают понятия «соотнесенное» и «противоположное». Приводит примеры большого и маленького, богатого и бедного, доброго и злого. После этого предлагает детям найти в окружающем мире другие примеры противоположного, просит указать, относительно какой точки отсчета дети осмысляют различие сторон. То же касается и понятия «соотнесенное».

Ортогональное

Знакомство с углами начинается с освоения шарнирной модели. Для начала детям дается образ прямого угла. Сдвигая стороны прямого угла, переходят к острому углу, тогда как раздвигая стороны, переходят к тупому углу. При этом подчеркивается, что величина угла зависит от поворота одной стороны шарнирной модели относительно другой.


Рис. 1. Шарнирная модель 1


Рис. 2. Шарнирная модель 2


Путём двойного перегибания листа бумаги учитель показывает, как получить модель прямого угла. Затем предлагает детям взять листочки, которые лежат у них на партах, сложить их пополам и еще раз пополам. У нас получился прямой угол. Дети выполняют различные упражнения, накладывая эту модель на тетради и книги. Кроме того, ученики строят прямые углы на клетчатой и нелинованной бумаге, находят прямые углы на различных предметах окружающей обстановки. Наложением различных моделей прямых углов друг на друга дети убеждаются в равенстве всех прямых углов между собой.

Развернув листочек, дети видят две прямые линии, по которым его складывали – они делят лист на 4 части.

Далее учитель рассказывает, что слово «прямоугольный», т.е. расположенный под прямым углом происходит от древнегреческого слова «ортогональный» (перпендикулярный). Рассказывает о перпендикуляре и о том внимании, которое уделяли древнегреческие мудрецы осмыслению ортогональной зависимости. При этом обязательно ставит ударение на том, что понятие «ортогональный» важно не столько само по себе, сколько в контексте его взаимной связи с колебаниями, ритмами, циклами, волнами. Отображать суть этих ритмов на бумаге помогает геометрическая модель – окружность.

Далее учитель объясняет, как вычерчивается окружность и показывает для этого специальный инструмент— циркуль. Отмечает, что в момент работы циркуля, ножка в которой закреплена игла, стоит на одном месте. Эту точку называют центром окружности. Другая ножка циркуля движется, и её конец вычерчивает линию, которую и называют окружностью.

Затем учащихся знакомят с радиусом окружности. Для этого на окружности отмечают какую-нибудь точку и соединяют ее отрезком с центром. Отрезок, соединяющий точку на окружности с центром, называют радиусом.

Связывая прямые углы с окружностью или с ее частью, учитель показывает различие между «Ортогональным Пифагора» и «Ортогональным Гераклита». Объясняет, почему при помощи ортогонального Пифагора отображается взаимодействие двух ортогональных сторон. Тогда как при помощи ортогонального Гераклита отображается колебание, как взаимодействие четырех сторон – двух пар противоположностей, раскрывающих причину всех циклических движений.

Поэтому на ортогональное надо смотреть как на тот оселок, на котором испытывается разум и мудрость, проявляется их зрелое отличие от рассудка. Не случайно, что две революции в философии – Гераклита и Маркса, сознавая это или нет, жестко сражались за утверждения разума и мудрости в мышлении.