Вечность. В поисках окончательной теории времени - страница 23
Одним из первых физиков, поддержавших атомную теорию, был шотландец Джеймс Клерк Максвелл, которому мы также должны быть благодарны за окончательную формулировку современной теории электричества и магнетизма. Максвелл совместно с Больцманом в Австрии (и продолжая работу многих других ученых) использовал идею атомов для объяснения поведения газов в рамках того, что было в то время известно под названием кинетической теории. Максвеллу и Больцману удалось установить, что атомы газа, заключенного в контейнер и содержащегося при определенной температуре, характеризуются определенным распределением скоростей: столько-то атомов двигаются быстро, столько-то медленно и т. д. Конечно же, эти атомы ударяются о стенки контейнера, каждый раз оказывая на нее крошечное воздействие. У суммарного влияния этих крошечных сил есть название: это всего-навсего давление газа. Таким образом, кинетическая теория объяснила свойства газов с помощью более простых правил.
Энтропия и беспорядок
Величайшим триумфом кинетической теории стало ее применение Больцманом для толкования энтропии на микроскопическом уровне. Больцман заметил, что при рассмотрении какой-то макроскопической системы мы не обращаем особого внимания на конкретные свойства каждого отдельного атома. Предположим, перед нами стоит стакан с водой, и кто-то украдкой заменяет несколько молекул воды, не изменяя при этом общие температуру, плотность и другие свойства системы. В таком случае мы не заметим подмены. Множество различных конфигураций атомов неразличимы с нашей, макроскопической точки зрения. Однако также Больцман обратил внимание на то, что объекты с низкой энтропией намного более чувствительны к изменению этих конфигураций. Если вы возьмете яйцо и начнете менять местами кусочки желтка и белка, то очень скоро изменения станут заметны. Системы, обладающие низкой энтропией, гораздо проще изменить путем перестановки атомов, в то время как системы с высокой энтропией устойчивы к подобным воздействиям.
Таким образом, Больцман взял понятие энтропии, которую Клаузиус и другие называли мерилом бесполезности энергии, и переформулировал ее в терминах атомов:
Энтропия – это мера количества индивидуальных микроскопических расстановок атомов, которые для макроскопического наблюдателя неразличимы.[29]
Рис. 2.2. Памятник на могиле Людвига Больцмана на центральном кладбище Вены. Высеченное на могильном камне уравнение:[30] S = k log W – это формула Больцмана, связывающая энтропию с количеством перестановок микроскопических частей системы, которые можно совершить без изменения ее макроскопического состояния (подробнее об этом – в главе 8)
Трудно переоценить важность этой догадки. До Больцмана энтропию рассматривали как феноменологическую термодинамическую величину, которая живет по собственным правилам (например, подчиняется второму началу термодинамики). Благодаря Больцману стало возможно вывести свойства энтропии из более глубоких базовых принципов. В частности, внезапно становится совершенно ясно, почему энтропия увеличивается:
Энтропия изолированной системы увеличивается, потому что существует гораздо больше способов создать высокую энтропию, чем низкую.
По крайней мере, эта формулировка сразу расставляет все по местам. Тем не менее она основана на принципиально важном допущении о том, что вначале у системы энтропия низкая. Если мы возьмем в качестве примера систему с высокой энтропией, то она будет находиться в равновесии – в ней вообще ничего не будет происходить. Слово «вначале» подразумевает асимметрию направлений времени, давая прошлому преимущество перед будущим. Эта цепочка рассуждений отсылает нас в самое начало времен, к низкой энтропии Большого взрыва. По какой-то причине из великого множества способов скомпоновать все составляющие Вселенной в самом начале был выбран только один – Вселенная находилась в особой, исключительной конфигурации с низкой энтропией.