Века сквозь математику, или Как математики раз за разом мир вертели - страница 9



*/

[9]

О. Нейгебауэр, Точные науки в древности. – М., Наука, 1968.

/*Хорошая книга, но намного более устаревшая, чем Ван дер Варден. Мне пришлось ее прочитать, когда я в свое время готовилась к курсу лекций, но, по-моему, [7] хватает.*/

[10]

под ред. А. П. Юшкевича, «История математики с древнейших времен до начала XIX столетия» в 3 томах, т.1. – М.:Наука, 1970.

/*Учебник по истории математики. В нем про есть про все подряд, но и про Древний Египет и Междуречье тоже.*/

Лекция 3.


Древняя Греция

Глава, в которой математика, наконец, появляется.



Рисунок 3.1: Фреска "Афинская Школа" Рафаэля Санти. Ватикан.

От математиков Египта и Междуречья до нас дошли только примеры решенных задач. В Древней Греции, наконец, мы видим появление математической науки. В чем разница? В математике появляются доказательства. Пока в математике нет доказательств, наукой она не считалась. Ремеслом, занятием, вспомогательным инструментом – да, может быть, но не наукой. Этот важнейший перелом, скачок на новый уровень, когда количество накопленных математических знаний (зачастую противоречивых) переходит в качество, случился приблизительно на рубеже VI и V веков до нашей эры.

3.1

Фалес. Начало.



Рисунок 3.2: Фалес. 624–546 гг. до н.э.

Кроме того, надо обязательно отметить и такой факт. В Египте и Месопотамии математика развивалась крайне медленно. Годами, да что там годами, столетиями, в математике ничего не происходило.

Чтобы изобрести цифру 0 (даже еще не число, а только лишь цифру обозначающую пропущенный разряд) у древних вавилонян ушло более тысячи лет! Свитки переписывались без изменений. А ведь это были учебники. И новые писцы учились по учебникам 1000-летней давности.

/*Сейчас в высших учебных заведениях России есть стандарт. Все учебники гуманитарных дисциплин должны быть не старше 5 лет. Вся учебная база естественно-научных дисциплин – не старше 10. Нельзя учиться по старым изданиям задачника Демидовича, нужно обязательно брать новые. В связи с этим в университете, где я работала, был забавный казус на факультете теологии. Весь "Ветхий завет" в библиотеке устарел! И включать его в учебную программу было нельзя.

Обратите внимание, что как нельзя использовать учебники старые, так нельзя использовать и слишком новые. Используемый учебник обязательно уже должен быть выпущен и одобрен УМО. Конечно же, я при написании этой книги, подобными ограничениями не руководствовалась – и поэтому с легкостью вам рекомендую к прочтению еще не дописанную и не выпущенную книжку [64].*/

А в Греции на протяжении примерно 300 лет с момента возникновения математики развитие ее идет взрывообразно. Очень быстро. В 6 веке до н.э. она появляется. А в 3 веке до н.э. уже Евклид пишет свои "Начала" – библию всех математиков, венец творения древних греков. В которой собрано безумное количество задач, теорем, алгоритмов по самым разным темам (мы на «Начала» посмотрим более пристально в главе 6). В этих самых «Началах» многие задачки очень нетривиальные! Математика от несуществования до очень высокого уровня, с доказательствами достаточной степени строгости, со многими приемами и методами, используемыми до сих пор, развилась в Древней Греции за 300 лет.

Как говорил про это Платон: "Все, что эллины переняли у варваров, они довели до совершенства".

Почему так? Почему именно тогда? В 6 веке до н.э. в греческих городах-государствах происходит смена власти с рабовладельческой аристократии на рабовладельческую же, но демократию. Все граждане государства могли принимать участие в управлении государством (ясное дело, никаких иноземцев, женщин и рабов – они гражданами не были; но право голоса появилось у всех граждан). Главный принцип демократии: каждый должен отстаивать, аргументировать, доказывать свою точку зрения. Никакие суждения без доказательства не могли пройти сквозь голосование. Греки учатся критическому мышлению, и помогает им в этом демократия. А как апофеоз критического мышления возникает математика.