Вихроны. Иллюстрированное издание - страница 41



замкнутых микровихронов.

Имеются и другие резонансные частоты ядерных фотонов, при которых могут объединятся с помощью различных резонансных микровихронов вложенные друг в друга многооболочечные структуры микрочастиц – это многочисленные ядра химических элементов. Это восемнадцатое свойство мезонных замкнутых ядерных вихронов. Так, например, несколько таких вихронов, образующих фотоны с энергией выше 1 Гэв со строго определенным энергетическим спектром при определенных условиях (аналог поля атомного ядра – мишень коллайдера, поверхность ядра звезды или молодой планеты) способны образовывать вложенные друг в друга фазовые объёмы замкнутых волноводов-оболочек (как внутренние слои луковицы). Такие резонансно замкнутые волноводы, содержащие в себе движущиеся к своим полюсам соответствующие магнитные противоположные заряды, способны стабильно сосуществовать в форме объёмов-микропространств нейтронов, протонов и других ядер химических элементов. Начиная с этой пороговой энергии ядерные микровихроны, получив при определенных взаимодействиях конкретный тип полярности, поляризации и частоту, способны также свободно образовать сферические, эллиптические и полусферические замкнутые пространства, как свободные биполярные вихроны образуют аналогичные волноводы свободного фотона. В ядрах звезд и на их поверхности, а также в мантии молодых планет в подобных условиях идет производство ядер схожих по структуре нейтрону, но и более тяжёлых. При этом, вихроны их образующие, а именно их число, поляризация, полярность и частота, в замкнутом многооболочечном пространстве, определяют такие внешне проявляемые свойства этих ядер как масса, время жизни, заряд, спин и размер сферы, занимаемой этими ядрами. Широкий диапазон частот, начиная от 10>23 гц до планковских (10>43 гц), большое разнообразие форм и степени поляризации, вплоть до деления и сложения энергии и спина, деление разных и слияние одинаковых монополей, концентрический захват и слияние сферических центров резонансных вихронов, высокая пластичность во взаимодействиях – всё это наделяет микровихроны такими же свойствами при строительстве широкого разнообразия микрочастиц Мироздания, какими обладают молекулы ДНК при выращивании живых клеток флоры и фауны.

Именно характер синхронизации движения[127] и взаимодействия микровихронов внутренних с вихронами внешних оболочек элементарных частиц, а внешних – с окружающими полями, определяет их время жизни, механизм и природу одного из фундаментальных взаимодействий – слабых взаимодействий, т. е. последовательная синхронность движения магнитных зарядов, расположенных в центре ядра, с движением магнитных зарядов внешних оболочек, приводит к стабильности его массы, ассинхронность – к распаду. В случае отсутствия запирающих и поляризующих (электрических) или стабилизирующих (например, поверхность нейтронной звезды) полей рано или поздно вихрон покидает созданный им волновод, строит новый, соответствующий новым условиям. Этим в нём достигается энергетический баланс и новая стабильная жизнь. Таким образом, механизм слабых взаимодействий определяется параметрами, свойствами и синхронностью взаимодействий движущихся в микрочастицах микровихронов. Это девятнадцатое свойство ядерных вихронов.

Отсюда вытекает обоснование производства ядерной энергии не только за счёт деления[128]