Виртуальная история: альтернативы и предположения - страница 43
Изначально этот феномен интересовал только последователей выдающегося французского математика Анри Пуанкаре. Пуанкаре полагал, что при многократной трансформации математической системы должна возникать периодичность, однако Стивен Смейл и другие ученые обнаружили, что во множественных измерениях некоторые динамические системы не ограничиваются четырьмя типами состояния покоя, описанными Пуанкаре для двух измерений. Используя предложенную Пуанкаре топологическую систему установления соответствия, можно было выявить ряд “странных аттракторов” (таких как канторово множество), к которым тяготели такие системы. “Странность” этих систем заключалась в крайней сложности предсказания их поведения. Из-за их чрезвычайной чувствительности к начальным условиям для безошибочного прогнозирования необходимо было располагать невозможно точным знанием их исходных точек[170]. Иными словами, кажущееся случайным поведение на самом деле не совсем случайно – оно просто нелинейно: “Даже когда наша теория детерминистична, не все ее предсказания подтверждаются воспроизводимыми экспериментами. Подтверждаются лишь те, которые выдерживают небольшие изменения начальных условий”. Теоретически мы могли бы предсказать, какой стороной упадет подброшенная монетка, если бы точно знали ее вертикальную скорость и количество оборотов в секунду. На практике это слишком тяжело – то же самое a fortiori относится и к более сложным процессам. В связи с этим, хотя теоретически вселенная все же детерминистична, “любые ставки на детерминизм бесполезны. Лучшее, на что мы способны, это вероятности… [поскольку] мы слишком глупы, чтобы разглядеть закономерность”[171].
Теория хаоса получила множество применений (и породила множество производных). Одним из первых стала классическая физическая задача “трех тел” – о непредсказуемости гравитационного воздействия двух равновеликих планет на частицу пыли, – что астрономы на практике наблюдали на примере очевидно случайной траектории вращения Гипериона вокруг Сатурна. Теория хаоса применима также к турбулентности жидкостей и газов – это особенно интересовало Митчелла Фейгенбаума. Бенуа Мандельброт обнаружил другие хаотические закономерности в своей работе “Фрактальная геометрия природы”: фрактал, по его определению, “продолжал демонстрировать четко определенную структуру в большом диапазоне масштабов” – прямо как “фиговое дерево” Фейгенбаума. Исследование Эдварда Лоренца о конвекции в погоде дает нам один из самых поразительных примеров хаоса в действии: он использовал фразу “эффект бабочки”, чтобы описать чрезвычайную зависимость климата от начальных условий (имея в виду, что взмах крыла единственной бабочки сегодня может в принципе определить, случится ли через неделю ураган на юге Англии). Иными словами, малейшие колебания состояния атмосферы могут приводить к серьезным последствиям – отсюда и невозможность хотя бы примерно точно прогнозировать погоду (даже при наличии мощнейшего в мире компьютера) более чем на четыре дня вперед. Роберт Мэй и другие также обнаружили хаотические закономерности в флуктуациях популяции насекомых и животных. В известном роде теория хаоса наконец подтверждает то, о чем давно догадались Марк Аврелий и Александр Поуп: даже если мир кажется “порождением случая”, он все равно обладает “четкой и прекрасной” – пускай и непостижимой – структурой. “Заключено в природе мастерство, / Хоть неспособен ты постичь его” (