Виртуальная конкуренция. Посулы и опасности алгоритмической экономики - страница 14



Посмотрим на ценность таких достижений. В шашках оба игрока знают все прошлые ходы и текущее состояние партии (зависящее от положения на доске каждой шашки). В покере игроки не обладают полным знанием о прошлых событиях (ненаблюдаемых картах соперника в предыдущих раундах) и текущем раунде (ненаблюдаемых картах)>63. Таким образом, найти решение игры в покер намного сложнее: в ней 3,16 х 10>17 состояний и 3,19 х 10>14 точек принятия решений (в которых тот или иной игрок должен принять решение). Обсуждаемый алгоритм, однако, вычислил стратегию для одной из разновидностей покера – лимитного техасского холдема с двумя игроками (two-player limit Texas Hold ’Em poker). В итоге эта стратегия оказывается беспроигрышной при сохранении статистического уровня значимости в течение человеческой жизни>64. Для поклонников покера мы упомянем, что этот алгоритм подтвердил, что дилер обладает существенным преимуществом, а оптимальная стратегия второго игрока чаще состоит в том, чтобы играть (play), а не пасовать (fold)>65. В результате достигнутого прогресса компьютер стал способен справляться со свойственной реальному миру проблемой неполной информации, тем самым получив техническую возможность сложного «человекоподобного» взаимодействия и принятия решений.

Облачные вычисления и интернет вещей

По мере роста в следующем десятилетии широты охвата (breadth) и качества данных положительная обратная связь между машинным обучением и большими данными будет усиливаться. Свой вклад внесут разработки в области облачных вычислений.

Например, в 2015 г. облачное подразделение компании Amazon ввело службу машинного обучения – Amazon Machine Learning. Алгоритмы компании Amazon помогают клиенту находить закономерности (patterns) в существующих данных>66. Затем Amazon создает модели, которые обрабатывают клиентские входные данные и генерируют прогнозы. Эти модели могут вычислять для своих клиентов вероятные мошеннические покупки, предпочтения потребителя и тенденции покупательского поведения. По мере роста обработки данных эти прогностические модели совершенствуются. Аналогично, компании Google and Microsoft в составе своих услуг по облачным вычислениям предоставляют алгоритмы машинного обучения для анализа данных и прогнозирования будущих результатов>67. В результате может возникнуть положительная обратная связь: клиенты будут иметь еще больший стимул собирать данные и использовать службы облачных вычислений, если они смогут получить конкурентное преимущество при помощи указанных прогностических моделей. А доступ к данным большого числа клиентов, естественно, улучшает алгоритмы компаний Amazon, Microsoft и Google.

Будет способствовать прогрессу и другой фактор – «интернет вещей» (т. е. интеграция программного обеспечения и датчиков, встроенных в предметы быта). Эта технология позволяет осуществлять, помимо межмашинного взаимодействия (M2M), сбор и анализ информации, собранной датчиками.

Например, в 2015 г. компания Amazon запустила свою «технологическую платформу интернета вещей», которая «позволяет подсоединенным устройствам легко и безопасно взаимодействовать с облачными приложениями и другими устройствами»>68. Данная платформа предназначена для обработки триллионов сообщений от миллиардов устройств «и способна надежно и безопасно обрабатывать и направлять эти сообщения к конечным точкам [в Amazon Web Service] и другим устройствам»