Виртуальный ты. Как создание цифровых близнецов изменит будущее человечества - страница 3



. Анализ облака пациента может выявить характерные сигналы того, что Худ называет «пред-предболезнью», которые врачи могут использовать, чтобы предвидеть проблему, а затем вмешаться для поддержания здоровья.

Худ говорит о «научном благополучии», которое «использует личные, плотные, динамические облака данных для количественной оценки и определения здоровья, а также выявления отклонений от состояния здоровья в сторону болезни». Живое воплощение его подхода, 82-летний мужчина, был в отличной форме («Я не планирую выходить на пенсию»), когда мы говорили с ним о его видении будущего «4П», где лечение будет прогнозирующим, профилактическим, персонализированным и партиципаторным. Моделирование тела поможет вступить в это будущее, выявив закономерности в данных пациента.

В действительности, конечно, мы обходимся неполным пониманием и неполными данными. Но, как показали достижения в области прогнозирования погоды, эти недостатки можно преодолеть и сделать полезные прогнозы. Мы прошли долгий путь с 1922 г., когда британский математик Льюис Фрай Ричардсон (1881–1953) в замечательной книге «Прогноз погоды с помощью численного метода» (Weather Prediction by Numerical Process) изложил идею фантастической фабрики прогнозов, где тысячи человеческих «компьютеров», использующих логарифмические линейки и калькуляторы, координируются «дирижером». Ричардсон размышлял: «Возможно ли будет когда-нибудь в туманном будущем проводить вычисления быстрее, чем меняется погода?» Но даже он признал, что фабрика прогнозов была всего лишь мечтой.

Столетие спустя его необыкновенное видение стало реальностью. Суперкомпьютеры могут делать прогнозы на несколько дней вперед с достаточной точностью, постоянно обновляя сложные компьютерные модели данными с орбитальных спутников, буев, самолетов, кораблей и метеостанций.

Типичная модель прогнозирования опирается на систему уравнений, позволяющую моделировать: будет идти дождь или сиять солнце. Существует уравнение для импульса, плотности и температуры в каждой из трех фаз воды (пар, жидкость и твердое состояние), а также, возможно, для других химических переменных, таких как озон, который поглощает вредное ультрафиолетовое излучение. Во второй главе мы объясняем, почему эти нелинейные дифференциальные уравнения, особенно уравнения в частных производных, управляют климатической системой. В целом, чтобы смоделировать планету с разрешением, составляющим в настоящее время около 60 км, требуются миллиарды уравнений[9]. Модель должна учитывать постоянно меняющиеся термодинамические, радиационные и химические процессы, действующие в масштабах от сотен метров до тысяч километров и от секунд до недель[10]. Это представляет собой проявление силы моделирования, которое, как утверждают некоторые, уже приближается к сложности, необходимой для моделирования человеческого мозга.

Благодаря потоку биомедицинских данных, доступных сегодня, а также все более мощной теории и расчетам, мы считаем, что в биологии моделирование произведет революцию так же, как и в метеорологии. Американский метеоролог Кливленд Эббе (1838–1916) однажды заявил, что прогресс в его области зависит от «посвящения в эту науку физиков и математиков»[11]. Вторя его видению прогнозирования из 1895 г., мы с нетерпением ждем того дня, когда будет недостаточно знать, что кто-то нездоров, – мы хотим иметь возможность понять, заболеет ли он в будущем и почему, чтобы мы могли его вылечить.