Восемь этюдов о бесконечности. Математическое приключение - страница 2
Если рассмотреть достаточное количество примеров задачи Коллатца, можно заметить одно обстоятельство: последние числа, появляющиеся в этом процессе представляют собой последовательно уменьшающиеся степени 2. Например, если начать с 15, то последние пять чисел последовательности – это 16, 8, 4, 2 и, наконец, 1.
Это явление можно сформулировать в виде правила, сказав, что если процесс доходит до числа вида 2>n, то он гарантированно сойдется к 1 в точности через n делений на 2. Это наблюдение позволяет перефразировать гипотезу 3n + 1 следующим образом: приходит ли на каком-то этапе процесс, начатый с любого произвольного числа, к степени 2?
Принцип замены исходной задачи на другую называется приведением или упрощением. Этот метод – полезный математический инструмент; в некотором смысле он открывает более естественный путь к решению математических задач. Еще одна, похожая, стратегия решения задач – это рассуждения в обратном порядке (от конца к началу). Этот прием, возможно, знаком вам по лабиринтам. Когда разрабатываешь маршрут по лабиринту, иногда бывает удобнее начать от выхода и прокладывать путь к исходной точке. В некотором глубоком смысле можно сказать, что в том же состоит и метод приведения математической задачи.
Венгерский математик Пал Эрдёш (1913–1996) любил предлагать денежные призы за успешное решение интересовавших его открытых математических проблем. Призы эти начинались с 25 долларов, а доказательство гипотезы Коллатца стоило в его прейскуранте целых 500 долларов – то есть попадало в категорию весьма дорогих задач, хотя сам Эрдёш говорил, что мир математики, возможно, не готов к таким сложным и запутанным задачам, как гипотеза 3n + 1. Эрдёша уже нет с нами, но можно не беспокоиться: выплату призов взял на себя его коллега Рон Грэм. Если вам удастся решить эту задачу, вы можете получить приз одним из двух способов: либо в виде чека, который сам Эрдёш выписал перед смертью (его можно только вставить в рамку: срок действия этого чека давно истек), либо реальными деньгами (выбор между грехом гордыни и грехом сребролюбия).
К слову, а также потому, что я хотел бы поделиться этим интересным фактом, самое большое число, когда-либо использованное в математическом доказательстве, названо в честь этого же самого Рона Грэма. Число это настолько велико, что его невозможно записать в стандартной математической нотации.
Мудрость – это знать, что не знаешь того, чего не знаешь, и знаешь то, что знаешь. Глупость – это думать, что знаешь то, чего не знаешь, или не знаешь того, что знаешь.
Китайская пословица
Пал Эрдёш был математиком исключительно плодовитым. Его превосходную биографию можно найти в книге Пола Хофмана «Человек, который любил только числа» (The Man Who Loved Only Numbers, 1998). Он написал более 1400 научных статей. Эрдёш был страстным поборником командной работы и сотрудничества, и за годы его научной деятельности вместе с ним над его статьями работали целых 511 математиков. Любому математику, который когда-либо писал статью в соавторстве с самим Эрдёшем, присваивается престижное число Эрдёша, равное 1. Те, кто сотрудничал с его соавторами, но не с самим Эрдёшем, получают число Эрдёша, равное 2. Аналогичным образом по мере все большего удаления присваиваются числа Эрдёша, равные 3, 4 и так далее. Общее правило таково: если вы сотрудничаете с человеком, наименьшее число Эрдёша которого равно