Возможны ли измерения в теории относительности? Конечно, нет! - страница 6



К неевклидовым геометриям я ещё вернусь, когда я буду обсуждать вопрос о возможности измерений в неевклидовых геометриях. А сейчас нам важно увидеть, какую негативную роль играет идеализм в физико-математических науках, особенно в их основаниях. При определении основного понятия идеалист всякий раз переходит от одной мысли к другой, а не от экспериментального факта к мысли о нем, а затем только к другим мыслям (как это делает материалист). В результате такого подхода идеалист неизбежно впадает в порочный круг. Всякое утверждение идеалиста в этом порочном круге всегда может быть оспорено. И не только. Оно (утверждение) может просто оказаться ложным. Всегда найдется человек, который спросит идеалиста: «Как Вы это узнали?» И тому, кому будет задан этот вопрос, придется долго и нудно объяснять, как он это узнал. И объясняя все это, идеалист неизбежно втянется в тот же порочный круг, по которому он и кружил. Вопрос о том, как вы это узнали, станет чисто риторическим (лишним или ненужным) только тогда, когда вы в своих рассуждениях укажете на эксперимент. Вы укажете на него, сказав: «Я узнал это из этого экспериментального факта». Почему этого будет достаточно? Да потому, что экспериментальный факт не нуждается в том, чтобы его существование кто-то доказывал или кто-то опровергал. Он будет существовать независимо от этого, одинаково для всех, он объективен. Но для того, чтобы так поступать, надо из идеалиста превратиться в материалиста. А это оказывается не так-то просто. Так, например, ни А. Пуанкаре, ни А. Эйнштейн так и не стали материалистами, хотя их обоих за идеализм в науке критиковали ещё при жизни. Идеализм в физико-математических науках как раз и подготовил основание для построения субъективной релятивистской физики. В следующем пункте мы увидим, что основания математики также покоятся на экспериментальных фактах, а не на каких- то идеях, не связанных ни с каким опытом.

7. Измерение и математика

Ну а что же математик? Он, кроме всего прочего, пишет формулы. Но у него также есть, те же аксиомы. У математика всякая величина, входящая в формулу, обязана обладать свойством измеряемости, а потому каждой такой величине соответствует абсолютная единица. Более того, у математика все величины (и буквенные) всегда «безразмерны», а у всех математиков единица одна и та же (объективна). Именно поэтому все формулы математика объективны. Они одни и те же для всех математиков и геометров. К этому факту мы настолько привыкли, что считаем его само собой разумеющимся. Однако достаточно в формуле появиться всего лишь одной величине, не обладающей свойством измеряемости, как тут же формула потеряет математический смысл, и превратится в набор букв. Это, например, будет означать, что в любой формуле, любой из знаков, <, >, =, может быть заменен на любой другой, из этой же тройки. В самом деле. Если нечто не измеряемо, то мы не можем сказать, чему равно это нечто. А значит, мы не можем записать и равенство, в котором указано, чему равно это нечто. Поэтому мы можем записать лишь формулы, в которых знаки <, >, =, совершенно равноправны. И таково свойство любой формулы. Математика это не устраивает. Мы видим, что в вопросе измерений, математик находится в подчинении геометра, и никоим образом не противоречит ему. Вот почему все расчеты по формулам математика, совпадают с построениями геометра (с точностью до ошибки эксперимента).