Введение в логику и научный метод - страница 50




Следует отметить, что суждения типа Е и I обладают превращенными конверсными суждениями без посредства ограничения, суждения типа А обретают превращенное конверсное суждение посредством ограничения, тогда как суждения типа О вообще таковыми не обладают.

Инверсия

Дано суждение «все физики являются математиками». Что можно заключить об отношении не-физиков к математикам или к не-математикам? Рассмотрим, к каким заключениям можно обоснованно прийти с помощью обращений и превращений.

Мы можем начать с обращения данного суждения, затем осуществить превращение и т. д. до тех пор, пока не получим требующееся суждение; или же мы можем начать с превращения и продолжить обращением и т. д. Попробуем развить эти два метода в параллельных столбцах. Первый метод – в левом столбце, второй – в правом:


Следовательно, если мы сначала обратим суждение типа А, мы вскоре вынуждены будем остановиться, поскольку суждение типа О не может быть обращено. Если же мы сначала превратим суждение А, то получим два суждения, которые будут удовлетворительными. «Некоторые не-физики не являются математиками» называется частично инверсивным суждением относительно исходного суждения. Его субъект является противоречием исходного субъекта, а его предикат совпадает с исходным предикатом. «Некоторые не-физики являются не-математиками» называется полностью инверсивным суждением. В нем как субъект, так и предикат противоречат исходным субъекту и предикату соответственно.

Все ли формы категорического суждения обладают инверсивным суждением? Если читатель использует указанный метод, то из суждения «ни один профессор не является недобрым» он сможет вывести суждение «некоторые не-профессора являются недобрыми» (частично инверсивное суждение) и «некоторые не-профессора не являются добрыми» (полностью инверсивное суждение). Однако из суждения типа I и О инверсивные суждения получить нельзя. Следовательно, только общие суждения обладают инверсивными суждениями, и в каждом случае инверсия осуществляется посредством ограничения.

Операция инверсии иногда может приводить к кажущимся абсурдными результатам, как, например, при получении из суждения «все честные люди смертны» инверсивного суждения «некоторые бесчестные люди бессмертны». На каком этапе вкралась ошибка? Ответ: при небрежном использовании отрицаний. Настоящим инверсивным суждением относительно исходного будет суждение «некоторые из тех, кто не является честным человеком, являются не-смертными», которое вовсе не абсурдно. Класс сущностей, не являющихся честными людьми, шире класса бесчестных людей и включает в себя треугольники и т. п., которые, разумеется, являются не-смертными.

«Одну минутку!» – может возразить читатель. «Частично инверсивным суждением для суждения «все физики являются математиками» является суждение «некоторые не-физики не являются математиками». В первом суждении предикат нераспределен, тогда как во втором – распределен. Как же можно утверждать, что второе суждение является обоснованным следствием первого? Нет ли здесь нарушения принципа о распределенности терминов?»

Если читатель усвоил наше обсуждение вопроса об экзистенциальной нагруженности суждений, то он без труда сможет ответить на свой вопрос. В общем суждении, скажет он, не утверждается ничего о существовании или несуществовании чего-либо; частные суждения, с другой стороны, обладают экзистенциальной нагруженностью. Следовательно, частное суждение может обоснованно выводиться из общего суждения или их сочетания, только если среди посылок есть суждение, утверждающее, что классы, обозначаемые терминами общих суждений, содержат, по крайней мере, один член. В частности, обращение суждения типа А является обоснованным, только если предикат обозначает такой непустой класс.