Введение в машинное обучение - страница 2



]. Схематично компоненты ИИ показаны на рисунке 1.1.


Рисунок 1.1. Подразделы искусственного интеллекта


Машинное обучение как дисциплина, являющаяся частью обширного направления, именуемого «искусственный интеллект», реализует потенциал, заложенный в идее ИИ. Основное ожидание, связанное с ML, заключается в реализации гибких, адаптивных, «обучаемых» алгоритмов или методов вычислений.

Примечание. «Метод вычислений» – термин, введенный Д. Кнутом для отделения строго обоснованных алгоритмов от эмпирических методов, обоснованность которых часто подтверждается практикой.

В результате обеспечиваются новые функции систем и программ. Согласно определениям, приведенным в [[6]]:

– Машинное обучение (ML) – это подмножество методов искусственного интеллекта, которое позволяет компьютерным системам учиться на предыдущем опыте (то есть на наблюдениях за данными) и улучшать свое поведение для выполнения определенной задачи. Методы ML включают методы опорных векторов (SVM), деревья решений, байесовское обучение, кластеризацию k-средних, изучение правил ассоциации, регрессию, нейронные сети и многое другое.

– Нейронные сети (NN) или искусственные NN являются подмножеством методов ML, имеющим некоторую косвенную связь с биологическими нейронными сетями. Они обычно описываются как совокупность связанных единиц, называемых искусственными нейронами, организованными слоями.

– Глубокое обучение (Deep Learning -DL) – это подмножество NN, которое обеспечивает расчеты для многослойной NN. Типичными архитектурами DL являются глубокие нейронные сети, сверточные нейронные сети (CNN), рекуррентные нейронные сети (RNN), порождающие состязательные сети (GAN), и многое другое.

Перечисленные компоненты ИИ показаны на рисунке 1.2.


Рисунок 1.2. Искусственный интеллект и машинное обучение


Сегодня машинное обучение успешно применяется для решения задач в медицине [[7], [8]], биологии [[9]], робототехнике, городском хозяйстве [[10]] и промышленности [[11], [12]], сельском хозяйстве [[13]], моделировании экологических [[14]] и геоэкологических процессов [[15]], при создании системы связи нового типа [[16]], в астрономии [[17]], петрографических исследованиях [[18], [19]], геологоразведке [[20]], обработке естественного языка [[21], [22]] и т.д.

1.1. Машинное обучение в задачах обработки данных

Массивы накопленных или вновь поступающих данных обрабатываются для решения задач регрессии, классификации или кластеризации.

В первом случае задача исследователя или разработанной программы ˗ используя накопленные данные, предсказать показатели изучаемой системы в будущем или восполнить пробелы в данных.

Во втором случае, используя размеченные наборы данных, необходимо разработать программу, которая сможет самостоятельно размечать новые, ранее не размеченные наборы данных.

В третьем случае исследователь имеет множество объектов, принадлежность которых к классам, как и сами классы, не определена. Необходимо разработать систему, позволяющую определить число и признаки классов на основании признаков объектов.

Таким образом, задача обработки данных называется регрессией, когда по некоторому объему исходных данных, описывающих, например, предысторию развития процесса, необходимо определить его будущее состояние в пространстве или времени или предсказать его состояние при ранее не встречавшемся сочетании параметров; классификацией, когда определенный объект нужно отнести к одному из ранее определенных классов, и кластеризацией, когда объекты разделяются на заранее не определенные группы (кластеры).