Введение в машинное обучение - страница 9



Функция h(x) может рассматриваться как вероятность того, что объект является «позитивным» (h(x)≥0.5) или «негативным» (h(x)<0.5). В сложных случаях, требующих нелинейной границы разделения, например, в виде окружности (рисунок 2.6), необходимо добавить дополнительные параметры, например, квадратные степени исходных параметров:



или их произведения и т.п.


Рисунок 2.6. Объекты, для которых необходима нелинейная граница разделения


Подбор параметров θ после выбора функции гипотезы выполняется так, чтобы минимизировать функцию стоимости вида:



Из двух частей функции стоимости, объединенных знаком +, вычисляется фактически только одна, так как в задаче классификации y может принимать только два значения: 1 и 0.

То есть в случае, если y = 0, стоимость для i-го примера принимает вид:



Таким образом, при минимальном значении функции стоимости в обоих случаях достигается максимизация вероятности принадлежности объекта к положительному классу для «положительных» объектов и минимизация вероятности для «отрицательных» объектов. По-другому логистический классификатор называется классификатором максимизации энтропии (maximum-entropy classification – MaxEnt).

Как и в случае с линейной регрессией, минимизация функции стоимости достигается с помощью алгоритма градиентного спуска (gradient descent), но также применяются Conjugate gradient [[36]], BFGS, L-BFGS или lbfgs [[37]].

Логистический классификатор может быть применен и в отношении нескольких классов. В этом случае для каждого класса классификатор настраивается отдельно. Класс, к которому принадлежит новый объект, вычисляется расчетом значений всех функций гипотез и выбором из них максимального значения m>iaxh>(i)(x), где i – номер класса. Другими словами, объект принадлежит к тому классу, функция гипотезы которого максимальна.

Как и в случае с линейной регрессией, для увеличения обобщающей способности алгоритма применяют регуляризацию (последнее слагаемое в нижеследующей формуле), которая позволяет уменьшить влияние величин высокого порядка:



Интересно, что производная функции стоимости логистической регрессии ровно такая же, как и производная функции стоимости линейной регрессии (вывод см., например, в [[38]]). Следовательно, алгоритм градиентного спуска будет работать так же, как и для линейной регрессии (формула 1.5), с тем отличием, что значение функции гипотезы будет вычисляться по формуле 2.8.

Пример. Построим линейный классификатор на основе логистической регрессии. Вначале сгенерируем набор данных и разделим его на тренировочное и тестовое множества:


from sklearn.datasets import make_moons, make_circles, make_classification

from sklearn.model_selection import train_test_split

dataset = make_circles(noise=0.2, factor=0.5, random_state=1)

X_D2, y_D2 = dataset

plt.figure(figsize=(9,9))

plt.scatter(X_D2[:,0],X_D2[:,1],c=y_D2,marker='o',

      s=50,cmap=ListedColormap(['#FF0000','#00FF00']))

X_train, X_test, y_train, y_test = train_test_split(X_D2, y_D2, test_size=.4, random_state=42)


В результате получим распределение данных, показанное на рисунке 1.3.

Вызовем необходимые библиотеки и методы:


>import matplotlib.pyplot as plt

>import numpy as np

>from sklearn.metrics import confusion_matrix, classification_report

>from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score


Последние две строки необходимы для оценки точности работы классификатора (см. раздел «Оценка качества методов ML»).