Здравый смысл врет. Почему не надо слушать свой внутренний голос - страница 23



Способность знать то, что релевантно для данной конкретной ситуации, есть отличительный признак тех общеизвестных истин, которые я обсуждал в предыдущей главе. На практике нам редко приходит в голову, что легкость, с которой мы принимаем решения, маскирует всевозможные сложности. Как замечает философ Дэниел Деннетт[10], когда встает посреди ночи, чтобы перекусить, ему нужно знать одно – что в холодильнике лежат хлеб, ветчина, майонез и пиво. А уж остальная часть плана образуется сама собой. Разумеется, он также знает, что «майонез не растворяет ножи, кусок хлеба меньше горы Эверест, а открывание холодильника не вызывает ядерную катастрофу на кухне», и, вероятно, триллионы других не относящихся к делу фактов и логических связей. Но каким-то образом ему удается проигнорировать все эти вещи – даже не осознавая, что конкретно он игнорирует, – и сосредоточиться на тех немногих, которые и вправду важны.

Впрочем, утверждает Деннетт, существует большая разница между знанием того, что релевантно, и пониманием, откуда, собственно, это знание взялось>69. На первый взгляд, вопрос простой. Для любой отдельно взятой ситуации релевантно, конечно, то, что объединяет ее с другими сравнимыми моментами. Например, мы знаем, что для принятия решения о покупке релевантна цена, ибо при совершении покупок именно она, как правило, имеет немаловажное значение. Но откуда мы знаем, какие ситуации сравнимы с той, в которой находимся мы? Что же, и в этом вроде бы нет ничего сложного. Сравнимы ситуации с одинаковыми условиями. Все «покупательские» решения подобны в том смысле, что включают размышления об имеющихся вариантах: стоимости, качестве, наличии и так далее. Но тут-то и возникает загвоздка: для определения того, что именно релевантно для данной ситуации, необходимо соотнести ее с неким рядом сравнимых. А чтобы определить это, необходимо знать, какие признаки релевантны.

Этот порочный круг (иначе говоря, внутренняя циркулярность) образует так называемую проблему фреймов[11], над которой философы и когнитивисты бьются вот уже несколько десятилетий. Проблема фреймов была впервые замечена в области искусственного интеллекта. В то время ученые делали первые шаги в программировании компьютеров и роботов, чтобы те решали относительно простые повседневные задачи – такие как, скажем, уборка комнаты. Поначалу предполагалось, что составить перечень всех релевантных для подобной ситуации факторов не может быть так уж сложно. Люди же как-то умудряются убирать свои комнаты каждый день и не задумываются об этом. Насколько же трудно научить этому машину? Выяснилось, что очень трудно. В предыдущей главе я уже писал о том, что даже такая относительно незамысловатая деятельность, как поездка в метро, требует поразительного количества знаний о мире. Речь идет не только о дверях и платформах. Нужно держать дистанцию, не смотреть другим пассажирам в глаза или вовремя убираться с дороги наглых, невоспитанных нью-йоркцев. Исследователи искусственного интеллекта очень быстро поняли, что буквально каждая повседневная задача сложна по одной и той же причине: список потенциально релевантных факторов и правил поразительно длинен. Неважно, что большей частью этого списка можно в конечном счете пренебречь. Заранее-то никогда не знаешь, что можно отбросить, а что – нельзя. Одним словом, чтобы научить своих «подопечных» выполнять даже наипростейшие задачи, исследователям пришлось писать сложнейшие программы