Апология математики (сборник статей) - страница 18
Тут самое время заметить, что скелеты представляют интерес главным образом для анатомов. И при всей пользе, которую художники могут извлечь из рисования скелетов, на картинах скелеты всё-таки изображают обросшими плотью.
В качестве поучительного отступления перескажу свой разговор с Ираклием Луарсабовичем Андрониковым. Я спросил, как ему удаётся не просто сымитировать звучание голоса, но добиться портретного сходства с героями своих рассказов. Главное, объяснил он, ухватить и воспроизвести мимику, раз уж сходство геометрической формы недостижимо.
Из только что сказанного как будто напрашивается вывод, что главная цель обучения гуманитариев математике состоит в том, чтобы познакомить их с математическими моделями или хотя бы заложить фундамент для такого знакомства. Однако это не так.
Главная цель обучения гуманитариев математике лежит в области психологии. Эта цель заключается не столько в сообщении знаний и даже не столько в обучении методу, сколько в изменении – нет, не в изменении, а в расширении психологии обучающегося, в привитии ему строгой дисциплины мышления. (Слово «дисциплина» понимается здесь, разумеется, не в значении 'учебный предмет', а в смысле приверженности к порядку и способности следовать этому порядку.) Как сказал Ломоносов, «математику уже за то любить стоит, что она ум в порядок приводит».
Помимо дисциплины мышления я бы назвал ещё три важнейших умения, выработке которых должны способствовать математические занятия. Перечисляю их в порядке возрастания важности: первое – это умение отличать истину от лжи (понимаемой в объяснённом выше объективном, математическом смысле, т. е. без ссылки на намерение обмануть); второе – это умение отличать смысл от бессмыслицы; третье – это умение отличать понятное от непонятного.
Вливание элементов математической психологии в сознание гуманитариев (недруги такого вливания назвали бы его индоктринизацией, а то и интоксикацией) может осуществляться как в прямой форме – путём обучения в классах и аудиториях, так и в форме косвенной – путём проведения совместных исследований, участия математиков в проводимых гуманитариями семинарах и т. п.
К косвенным формам влияния относятся даже вопросы, задаваемые математиками на лекциях на гуманитарные темы. Здесь на память приходит известный случай из истории психологии. В конце XIX в. в одной из больших аудиторий Московского университета была объявлена лекция на тему «Есть ли интеллект у животных?». Просветиться собралось несколько десятков, а то и сотен слушателей. Председательствовал заслуженный ординарный профессор математики Московского университета Николай Васильевич Бугаев – президент Московского математического общества (с 1891 по 1903 г.) и отец Андрея Белого. Перед началом доклада он обратился к аудитории с вопросом, знает ли кто-либо, что такое интеллект. Ответ оказался отрицательным. Тогда Бугаев объявил: поскольку никто из присутствующих не знает, что такое интеллект, лекция о том, есть ли он у животных, состояться не может. Это типичный пример косвенного воздействия математического мышления на мышление гуманитарное. Подобные формы воздействия также являются одним из элементов математического образования.
За последние полвека заметно уменьшилось количество непонятных или бессмысленных утверждений в отечественной литературе по языкознанию. Полагаю, что произошло это не без влияния – как прямого, так и главным образом косвенного – математики.