Базовая оценка минерализации. Ресурсный геолог - страница 8




Представительные выборка

Гистограмма

В большинстве случае объем выборки таков, что ее невозможно всю «охватить взглядом». Однако желание понять, что из себя представляет тот массив данных, который есть в распоряжении, возникает сразу же после появления этого массива. И одним из наилучших способов получить это понимание является графический, поскольку подавляющее количество информации человек получает с помощью зрения. Просто просмотр числовых значений при большом объеме выборки мало что дает, поэтому хочется как-то «генерализовать» всю эту информацию. Для такой генерализации и визуального представления существует очень полезный вид диаграмм, называемый гистограммами. Гистограммы представляют собой столбчатый график, в котором по горизонтали отложены значения изучаемой величины, по вертикали – частота встречаемости значений, а все данные сгруппированы в то или иное количество классов содержаний равной величины и представлены, соответственно, столбцами. Равенство классов в данном случае означает равенство разброса содержаний (не количества наблюдений!) в каждом классе.


Гистограмма


Методика построения гистограммы проста и незамысловата:

– Определяем размах изучаемой величины.

– Решаем, на какое количество классов содержаний будем разбивать наши данные. Количество классов содержаний – это количество столбцов на создаваемой гистограмме (точнее, максимальное количество столбцов). Например, мы определили, что размах содержаний составляет 100 г/т – от 0 г/т до 100 г/т. Далее мы захотели разбить весь диапазон на 10 классов содержаний (о выборе количества классов содержаний чуть дальше). В этом случае границы классов будут следующими: от 0 до 10 г/т, от 10 до 20 г/т, от 20 до 30 г/т… от 90 до 100 г/т.

– Для каждого класса содержаний подсчитываем количество проб, попавших в класс. При подсчете обычно в класс включают нижнюю границу – т. е. содержание 10 г/т войдет в класс от 10 до 20 г/т, а не в класс от 0 до 10 г/т. Хотя возможна и обратная схема. Но в любом случае – схема включения граничных содержаний должна быть едина, и каждая проба должна быть учтена только в одном классе.

– На оси абсцисс (горизонтальной, если забыли) отмечаем границы классов, на оси ординат (вертикальной) размечаем масштаб. И для каждого класса содержаний строим прямоугольник, такой, что вертикальные стороны совпадают с границами классов, а высота равна количеству проб в данном классе с учетом выбранного масштаба. В итоге должно получиться что-то, похожее на диаграмму, приведенную выше (с учетом особенностей используемого распределения).

Можно вместо натуральных величин частоты (т. е. «штук») использовать долю проб в данном классе от общего количества проб – количество проб не всегда информативно. Характер гистограммы от этого не изменится, поменяется только вертикальный масштаб.


Гистограмма


Если длина проб резко различна, то имеет смысл использовать взвешивание – в этом случае на длину пробы. Случается, что визуально видимую минерализацию опробуют более детально – секциями меньшего размера, тогда как слабо проявленные околорудные изменения – более длинными пробами. Гистограмма, построенная по количеству проб, в этом случае неправильно отражает характер распределения содержаний, и вместо количества проб в каждом классе в этом случае лучше подсчитывать суммарную длину проб. То есть в данном случае имеет смысл выполнять взвешивание на длину. Сравните две гистограммы ниже. Они построены по одним и тем же данным. Но гистограмма слева построена без взвешивания на длину, а справа – со взвешиванием. Очевидно, характер гистограмм несколько различен.