Библиотеки Python Часть 2. Практическое применение - страница 7



# Проверяем, прошло ли 10 минут

current_time = datetime.now()

for user, login_time in list(user_login_time.items()):

if current_time – login_time > timedelta(minutes=10):

notification = {'user_id': user, 'message': 'Сделайте покупку!'}

producer.produce('notifications', value=json.dumps(notification))

print(f"Уведомление отправлено для пользователя {user}")

del user_login_time[user]

except KeyboardInterrupt:

print("Завершение работы.")

finally:

consumer.close()

```

Объяснение:

– Время входа пользователей сохраняется в словаре.

– Если с момента входа прошло более 10 минут и покупка не совершена, генерируется уведомление.

Эти задачи показывают, как использовать Apache Kafka для решения реальных задач, таких как фильтрация событий, подсчет статистики, агрегация данных и сохранение обработанной информации. Эти примеры помогут вам освоить основные подходы к работе с потоками данных в реальном времени.


1.3 Работа с базами данных: SQLAlchemy и интеграция с Pandas

SQLAlchemy – это мощная библиотека для работы с базами данных в Python. Она предоставляет инструменты для удобного взаимодействия с реляционными базами данных через ORM (Object Relational Mapping) или с использованием чистого SQL.

Pandas же идеально подходит для анализа данных, но иногда данные, которые мы хотим обработать, хранятся в базах данных. Для этого SQLAlchemy и Pandas можно эффективно интегрировать, чтобы выгружать данные из базы, обрабатывать их в Pandas и сохранять обратно.


Установка и подключение

Для начала работы установите библиотеку SQLAlchemy:

```bash

pip install sqlalchemy

```

Если вы используете SQLite, дополнительных действий не требуется. Для других баз данных, таких как PostgreSQL или MySQL, также потребуется установить драйверы, например:

```bash

pip install psycopg2 # Для PostgreSQL

pip install pymysql # Для MySQL

```

Создайте подключение к базе данных с помощью SQLAlchemy. Например, для SQLite это будет выглядеть так:

```python

from sqlalchemy import create_engine

# Создаем подключение к базе данных SQLite

engine = create_engine('sqlite:///example.db', echo=True)

```

Здесь `echo=True` означает, что в консоль будут выводиться SQL-запросы, выполняемые через SQLAlchemy, что полезно для отладки.


Создание таблиц и работа с ORM

SQLAlchemy поддерживает два основных подхода: работа через ORM и использование SQL-запросов напрямую. Рассмотрим оба.

Создадим таблицу для хранения информации о пользователях:

```python

from sqlalchemy import Table, Column, Integer, String, MetaData

# Создаем метаданные

metadata = MetaData()

# Определяем таблицу

users = Table(

'users', metadata,

Column('id', Integer, primary_key=True),

Column('name', String),

Column('age', Integer),

Column('email', String)

)

# Создаем таблицу в базе данных

metadata.create_all(engine)

```

Теперь таблица `users` создана в базе данных.

Для добавления данных используем объект подключения:

```python

from sqlalchemy import insert

# Подключаемся к базе данных

conn = engine.connect()

# Добавляем данные

insert_query = insert(users).values([

{'name': 'Alice', 'age': 25, 'email': 'alice@example.com'},

{'name': 'Bob', 'age': 30, 'email': 'bob@example.com'},

{'name': 'Charlie', 'age': 35, 'email': 'charlie@example.com'}

])

conn.execute(insert_query)

print("Данные добавлены в таблицу.")

```


Чтение данных и интеграция с Pandas

Чтобы выгрузить данные из базы данных в Pandas, SQLAlchemy предоставляет удобный метод. Используем Pandas для выполнения SQL-запроса: