Борьба со старением, или Не все мы умрем… - страница 21



: та часть молекулы, где находится водород, заряжена положительно, а часть, где находится кислород, – отрицательно.


Рис. 1.2.2. Ковалентная связь молекулы воды


Связываясь с атомом наиболее электроотрицательных элементов (фтор, кислород, хлор и азот), атом водорода приобретает положительный заряд. При этом в отличие от других атомов водород, отдавший электрон, является ядром, абсолютно лишенным электронной оболочки. Размеры ядра в тысячи раз меньше размера атома. Поэтому водород может подойти очень близко к другим атомам – электронная оболочка ему уже почти не мешает. Если рядом находится другой диполь, водород притянется к его отрицательному концу. Так образуется водородная связь. Она в 4–10 раз менее прочна, чем ковалентная и ионная. Водородные связи часто встречаются в молекулах белков, нуклеиновых кислот и других биологически важных соединений, поэтому эти связи играют важную роль в биохимии.

Ковалентная и водородная связи составляют основу биохимии. Используя ковалентную связь, аминокислоты могут связываться в огромные по размеру и весьма сложные белки[31].

Для наиболее продвинутых и любознательных читателей поясним, что для построения сложных белков служит ковалентная связь между атомами азота и углерода.

От одной аминокислоты с конца COOH (карбоксила) отщепляется – OH, а от конца с NH>2 (аминогруппы) – другой – H, из них образуется вода (H-O-H, или хорошо знакомая всем H>2O). Освободившиеся при этом электроны образуют ковалентную связь между C и N. Ковалентную связь между двумя аминокислотами принято называть пептидной[32].


Рис. 1.2.3. Образование пептидной (ковалентной) связи между двумя аминокислотами


В белковых цепях атомы водорода, ковалентно связанные с атомами азота (левый конец на рисунке 1.2.3), взаимодействуют с атомами кислорода соседней цепи или другого участка этой же цепи (справа) и образуют водородную связь. Все сложные белки содержат сотни водородных связей, которые сворачивают их в причудливые формы (шары, спирали и т. д.).

Водородная связь играет важнейшую роль в построении молекул ДНК и РНК, задающих и передающих генетический код. ДНК состоит из четырех типов элементов, которые называют нуклеотидами.


Рис. 1.2.4. Двойная спираль ДНК


Каждый нуклеотид состоит из одинакового для всех связующего звена, состоящего из сахара и остатка фосфорной кислоты, и одного из четырех разных кодирующих элементов: аденина, гуанина, тимина или цитозина. Связующие элементы создают между собой прочные ковалентные связи (азот – углерод), вместе образующие спираль, напоминающую штопор. Кодирующие элементы связываются друг с другом водородными связями: аденин с тимином двумя водородными связями, а гуанин и цитозин – тремя. Через мостики кодирующих элементов две спирали ДНК связываются, образуя двойную спираль с перемычками, напоминающую лесенку (рис. 1.2.4).

Так устроена основная молекула жизни!

РНК отличается от ДНК незначительно. Во-первых, в качестве связующего звена используется другой тип сахара – не дезоксирибоза, а просто рибоза. Во-вторых, вместо тимина РНК использует другое основание – урацил.

Ковалентная и водородная связи определяют многие свойства основы нашего тела – воды. Ковалентная связь создает асимметрию молекулы воды и создает ее двухполюсную структуру, кратко диполь. То есть отрицательно заряженный атом кислорода в молекуле воды несколько отстоит от положительных ядер атома водорода (как показано на рис. 1.2.2).