Читать онлайн Светлана Проскурина - Человек дышащий. Как дыхательная система влияет на наши тело и разум и как улучшить ее работу





Просветитель


Фото на обложке: Гусев Николай


В оформлении использованы материалы, предоставленные Фотобанком Shutterstock, Inc., Shutterstock.com



©  Проскурина С., 2024

©  ООО «Издательство АСТ», 2024

Глава 1

Эволюция дыхания

Где искать у себя жабры? Как устроено дыхание?

Поиск в себе рыбьих черт – занятие не совсем обыденное. Посмотрев на себя в зеркало, вы абсолютно точно сможете сказать, что у вас нет ни жабр, ни плавников, ни уж тем более хвоста. Однако рыба прячется внутри вас, хоть вы об этом и не подозреваете.


На самом деле часть своих свойств и необходимых в дыхании приспособлений мы позаимствовали у рыб. Интересно, что во многих славянских языках слово «жабры» и слово «ребра» очень похожи. Например, в Праге во многих ресторанчиках можно заказать себе свиные «жебра», и поверьте, ни о каком ГМО или жутких экспериментах животноводов речи не идет. Просто в чешском языке «жабры» и «ребра» еще более схожи, чем в русском языке. И хоть эти слова этимологически никак не связаны, наши ребра действительно прошли очень долгий путь от жабр рыб и умудрились сохранить при этом свое участие в дыхательном процессе.


Ребра человека в процессе эмбрионального развития закладываются вместе с развивающимся позвоночником и от позвонков удлиняются и растут в сторону грудины. Иногда встречаются аномалии развития, и тогда ребрами обзаводятся не только грудные позвонки, но и шейные. Изначально у нас начинают развиваться целых 29 пар ребер, практически на всем протяжении позвоночника (всего позвонков 33), но потом продолжают расти только 12 пар ребер, а остальные 17 пар рассасываются.

Многие люди, имеющие лишние шейные ребра, об этом даже не догадываются, и их наличие никак не проявляется.

Первые ребра возникли у древних примитивных рыб, при этом у многих рыб осталось два набора ребер – спинные и брюшные, но они скорее служат для поддержки мышц и увеличения жесткости тела и не играют особой роли в дыхании. У рептилий же впервые появляется грудная клетка. Коротенькие ребра, с которыми бегали и продолжают бегать амфибии (лягушки, жабы, тритоны), у рептилий увеличились в длину, изогнулись и замкнулись спереди на грудине, создав защитный каркас для нежных легких и сердца и позволив таким образом эффективнее раздувать легкие при каждом вдохе. Обратите внимание на ребра рыб, короткие ребра лягушки, не до конца сходящуюся грудную клетку ящерицы и полноценную закрытую грудную клетку кошки и птицы (см. рис. 1).


Рис. 1. Эволюция грудной клетки


Если вы все еще стоите перед зеркалом, то запрокиньте голову назад и приложите пальцы к горлу прямо под нижней челюстью, там вы сможете нащупать маленькую косточку в форме подковы. Именно она иногда «встает не туда», если вы проглотили слишком большой кусок пищи или неудачно повернули шею. Если пошевелить ее вправо и влево, возможно вы почувствуете легкий хруст. Это подъязычная кость, и когда-то давно она тоже была участком жабр древних рыб. Теперь же она помогает нам глотать, дышать, наклонять голову, открывать, закрывать рот и разговаривать.

Говорят, что у болтливого человека язык без костей, но как раз без этой маленькой косточки или при ее переломе, разговаривать не получится. Нашему языку просто необходима хотя бы одна эта кость для опоры и движения. У хамелеонов тоже есть такая косточка, она работает как спусковой механизм в пружине и помогает ему выстреливать своим языком в добычу. У человека таких сверхспособностей подъязычная кость не имеет, в противном случае социальные взаимодействия определенно вышли бы на новый уровень.

У некоторых людей эта косточка располагается ниже, чем это необходимо, либо спускается вниз из-за увеличения объема мягких тканей в подчелюстной области (именно так изящно можно называть второй подбородок). В таком случае косточка при расслаб лении мышц во сне способствует храпу и обструктивному апноэ, когда человек посреди очередной трели храпа вдруг затихает и кажется, что он не дышит. Вам не кажется, он действительно не дышит в этот момент, но об этом подробнее мы поговорим в следующих главах.


Если приглядеться, форма верхней и нижней челюсти – дугообразных костей, тоже похожа на жаберные дуги, из которых они формируются. Первая и вторая жаберные дуги кроме костей и связок, участвующих в дыхании, жевании и говорении, дали нам еще и возможность слышать и сформировали три слуховые косточки – молоточек, наковальню и стремечко. Так слух и воспроизводство звуков совершенствовались на протяжении миллионов лет, и теперь благодаря им мы можем одинаково наслаждаться и оперой, и караоке.


Оставшиеся жаберные дуги – 4 и 5 – пошли на материал для хрящей трахеи. Вы скажете, что все это было чертовски давно, миллиарды лет назад, если вообще было, а я в ответ скажу, что эти чудесные превращения жаберных дуг в челюсти, трахею и слуховые косточки с вами лично произошли совсем недавно, и даже могу назвать точные даты, когда именно. Для этого нужно от даты вашего рождения отнять 8,5 месяцев, и получится как раз тот период, когда вы были больше похожи на рыбку, чем на человека (см. рис. 2). В самом начале нашей жизни мы все были похожи на маленькую рыбку. А из жаберных дуг потом формируются некоторые кости и полости лицевого отдела черепа, мышцы шеи, грудная клетка (см. рис. 3).


Рис. 2. Эмбриональное развитие жаберных дуг


Рис. 3. Жаберные дуги и жаберные карманы у человеческого зародыша в 5 недель


Между жаберными дугами у рыбы, например у акулы, есть щели (см. рис. 4). В процессе эмбрионального развития щели также претерпевали изменения. Наше тело приспособило жаберные щели и жаберные карманы для новых функций. Жаберные карманы – это такие же щели, но, если бы вы их видели уже изнутри, скажем, глотки акулы, скорее всего, это было бы последним, что вы бы увидели. Из них сформировались наружный слуховой проход, барабанная перепонка, евстахиева труба и барабанная полость в височной кости (см. рис. 5), где у вас молоточек стучит по наковальне и раздражает тем самым стремечко, которое колышет овальное окно внутреннего уха, а вы благодаря этому слышите все звуки вокруг.


Рис. 4. Щели между жаберными дугами у акулы


Рис. 5. Строение уха человека

Остатки незарощенных жаберных щелей иногда проявляются такими пороками развития челюсти, как заячья губа и волчья пасть.

Что общего между жабрами акул и заложенной ноздрей?

Некоторые мягкие ткани в жабрах рыб и в носу человека схожи между собой. В слизистой носа, как и в акульих жабрах, есть эректильная пещеристая ткань, снабженная большим количеством кровеносных капилляров. При необходимости капилляры могут расширяться, и ткань от этого набухает. Отек проходит, когда капилляры сужаются. Если акуле нужно увеличить захват кислорода из воды, ее нервная система посылает сигнал капиллярам в пещеристой ткани жабр, они набухают, их объем и кровоток увеличивается, и кислород более эффективно смешивается с кровью. У человека по этому принципу работает назальный цикл.


Сейчас, когда вы читаете эту книгу, какой ноздрей вы дышите? Чтобы проверить, можно закрыть одну ноздрю, сделать пару вдохов и выдохов, а потом закрыть вторую. Почувствовали разницу? Даже если вы абсолютно здоровы, у вас работает в основном одна ноздря, а другая отдыхает.


На снимке МРТ (см. рис. 6) видно, что этот человек сейчас хорошо дышит правой ноздрей, там назальные пути шире, а левая ноздря отдыхает.


Рис. 6. Снимок МРТ


Назальный цикл – процесс носового дыхания – меняется каждые 2,5 часа. Дело в том, что поддерживать слизистую увлажненной, а клетки здоровыми сразу в двух носовых ходах очень энергозатратно. Пока одна ноздря работает вовсю, увлажняет вдыхаемый воздух, фильтрует бактерии, шевелит ресничками слизистой, чтобы гнать сопли и поддерживать здоровье носовой полости, другая половина носа отдыхает, слизистая за это время восстанавливается и готовится к работе. Отдыхающую ноздрю «закладывает» с помощью все той же пещеристой ткани, как в акульих жабрах. К ней приливает кровь, она расширяется и перекрывает частично или полностью носовой ход. Если назальный цикл нарушается из-за нервного влияния или из-за сосудосуживающих капель, слизистая истощается и пересыхает, может начаться хронический насморк или аллергический ринит. Вот что бывает, если не беречь свои пещеристые ткани и пытаться вылечить естественный физиологический процесс, подумав, что это у вас ноздря заложена.


Кстати, как и в слизистой носа, в жабрах присутствует большое количество иммунных клеток, которые всегда готовы отразить атаку вирусов и бактерий извне. Если акула начнет «сопливить», потому что подхватила в воде какой-то вирус, то это будет происходить в жабрах[1].


Если вы думаете, что видоизмененные жабры – не такое уж роскошное наследство и рыбы могли быть более щедрыми на подарки своим далеким потомкам, не спешите с выводами. Эти ребята порядком наследили в дыхательной системе человека.


Некоторые рыбы, чтобы не утонуть, используют плавательный пузырь, такой надувной круг для плавания, только находящийся внутри тела рыбы. У рыб он формируется из кишечника и помогает держаться в толще воды. Плавательный пузырь – это прототип наших легких, они имеют одинаковое происхождение. Если бы эволюция свернула немного не туда, мы бы тоже ходили с плавательным пузырем. Как и легкие, он формируется из выпячивания кишки. Как и легкие, внутри он смазан особым жироподобным веществом – сурфактантом, которое помогает ему не спадаться и не слипаться его стенкам, а еще с его помощью некоторые рыбы, как и мы с помощью легких, умеют издавать звуки и даже кричать (например, рыбы-жабы).

Некоторые виды рыб используют плавательный пузырь для дыхания, если в водоеме становится мало кислорода. Кстати, наши легкие тоже помогают нам не только дышать, но и плавать. Если задержать дыхание на вдохе, оставаться на плаву в воде намного легче, чем если до конца выдохнуть, потому что в этом случае объем внутреннего «спасательного круга» значительно уменьшится.

До сих пор ведутся споры, дал ли плавательный пузырь рыб начало легким, или они сформировались независимо друг от друга. В ходе эволюции природа перепробовала все варианты дыхания, у некоторых животных для этого используются любые органы, контактирующие с кислородной средой, – кожа, глаза, кишки, жабры, трахея, легкие, плавательный пузырь, слизистая рта и носа. Но одной из самых удачных конструкций, позволяющей жить в богатой кислородом среде, все-таки оказались легкие.


Чем дальше в ходе эволюции развивались легкие, тем на большее количество сегментов они разделялись. Такое деление увеличивало площадь дыхательной поверхности и позволяло легким увеличивать количество кислорода, доставляемого в кровь. У древних рыб, амфибий и рептилий легкие очень простые, не разделенные на большое количество камер, и больше напоминают сегментированные пузыри, обильно обросшие кровеносными капиллярами (см. рис. 7).


Рис. 7. Легкие рыб, амфибий, рептилий и млекопитающих


Площадь поверхности таких пузырей, если развернуть их слизистые оболочки, не очень велика и не способна снабжать организм большим количеством кислорода. Из-за этого такие животные не могут позволить себе отапливать собственное тело. Процесс создания энергии за счет реакции кислорода и глюкозы в их клетках, который сопровождается выделением тепла, не настолько мощный и быстрый, чтобы поддерживать постоянную температуру тела. Уровень метаболизма у рептилий составляет только 10 % от нашего. То есть если человек в сутки тратит 2000 ккал, то крокодил весом с человека – всего 200 ккал. Поэтому он может есть раз в год, а мы нет. Птицам в этом плане еще сложнее, им необходимо намного больше энергии из-за полета и высокой температуры тела (40–41 °C), поэтому их метаболизм в три раза выше, чем у млекопитающих.