Чудеса арифметики от Пьера Симона де Ферма - страница 10
Что же касается никому не нужных научных открытий, то многие просто не в курсе, что они могут спокойно жить и потреблять все необходимые им жизненные ресурсы только до тех пор, пока накопленный в обществе ресурс знаний для данного уровня его развития не будет подходить к исчерпанию. А после этого, чтобы удержать достигнутое, более сильные страны будут нападать на более слабые и жить за счёт их грабежа. Но этого вообще бы не понадобилось, если бы у этих «сильных» стран было достаточно знаний. Тогда бы и не пришлось им конфликтовать со всем остальным миром, поскольку все необходимые ресурсы в избытке обеспечивались бы наукой.
Мы же на этом наше введение будем завершать, но придадим ему такой тайный импульс, который позволит нам совершить настоящее чудо! … нет даже целых два!!! Эти чудеса мы можем назвать здесь своими именами. Ведь наши вечные оппоненты, из-за полного отсутствия у них настоящей науки на такое просто неспособны.
В итоге они узнают о реализации именно в России самого грандиозного технологического прорыва за всю историю нашей цивилизации с безграничным потенциалом эффективности развития на необозримое будущее. Пресловутые «долины», «технопарки», «инкубаторы» и им подобные мнимы для таких прорывов непригодны в принципе. А ещё раньше, свершится другое чудо, когда Россия буквально за пару месяцев на обломках обрушающейся уже сегодня мировой ростовщической финансовой системы создаст новую, в которой никакие международные деньги, станут не нужны, а все страны будут использовать в международной торговле только свои национальные валюты. Не верите? Ну так убедитесь сами, книга-то у вас в руках!
1. Величайший феномен науки
Обычно образ науки представляется как упорядоченная система знаний обо всем, что можно наблюдать в окружающем нас мире. Однако образ этот иллюзорный и на самом деле никакой упорядоченности в науке нет, поскольку она формируется не развитием знаний от простого к сложному, а всего лишь историческим процессом появления новых теорий. Классический пример – это аналитическая геометрия Декарта – Ферма, где, по сравнению с геометрией Евклида, наука видит лишь удобное для аналитики представление числовых функций в системе координат, но никак не оценивает качественный переход от натурализованных элементов, (точка, линия, поверхность и т.п.), к числам>1.
Казалось бы, это настолько несущественно, что не может иметь каких-то последствий, однако по иронии судьбы именно после расширения числовой оси до числовой плоскости наука была безнадежно скомпрометирована, т.к. вдруг выяснилось, что такое представление чисел не подчиняется основной теореме арифметики о том, что разложение целого числа на простые множители всегда единственно возможное. Но тогда должен быть сделан и соответствующий вывод о том, что никакой числовой плоскости не существует и всё, что с ней связано должно быть списано в архив истории.
Но не тут-то было! Если в науке нет упорядоченности, то нет и никаких оснований для привязки новых знаний к более ранним. Потому для учёного мира вовсе и не новость, что для числовой плоскости основная теорема арифметики не действует. Это было известно ещё полтора столетия назад и никому даже в голову не пришло отказаться от этой идеи. За это время столько всего было понаделано, что вот так просто взять и всё это выбросить ну никак не представляется возможным. Ведь многие «специалисты» с их «научными» исследованиями могут потерять работу, а все монографии, справочники и учебники по этой теме разом превратятся в тонны макулатуры