Чудеса арифметики от Пьера Симона де Ферма - страница 29
.
Рисунок 30
Пифагор
Это расширенное определение понятия числа выходит за рамки математики, поэтому его можно назвать общим, а предыдущее определение – математическим. В этом определении нужно ещё разъяснить сущность понятия «данные». Однако для современной науки этот вопрос не менее трудный, чем вопрос о сущности понятия числа>33. Из общего определения понятия числа следует истинность знаменитого утверждения Пифагора о том, что всё сущее может отображаться как число. Действительно, если число – это особая разновидность информации, то вот это очень смелое по тем временам утверждение не только обосновано, но и подтверждено современной практикой его применения на компьютерах, где реализуются три известных способа представления данных: числовой, (или оцифрованный), символьный, (или текстовый), и аналоговый (изображения, звук и видео). Все три способа существуют одновременно.
Рисунок 31
Готфрид Лейбниц
Поразительно смелое даже по нынешним временам утверждение о том, что мышление есть неосознанный процесс вычислений, высказал ещё в XVII веке Готфрид Лейбниц (Gottfried Leibniz). Под мышлением здесь явно понимается процесс обработки данных, которые во всех случаях могут представляться как числа. Тогда понятно, как появляются вычисления, но понимание сути этого процесса у современной науки пока отсутствует>34.
У всех определений числа есть одна общая основа: Числа существуют объективно в том смысле, что они присутствуют в законах окружающего мира, познавать которые можно только с помощью чисел.
Со школьной скамьи все узнают о числах из детской считалки: раз, два три, четыре, пять и т.д. Откуда взялась эта считалка, один Господь ведает. Впрочем, были и попытки объяснить её происхождение с помощью аксиом. Однако происхождение их самих такое же непонятное, как и считалки. Скорее это похоже на некое подражание «Началам» Евклида, чтобы придать знаниям образ науки и внешнюю видимость солидности и фундаментальности.
Ситуация совсем иная, когда есть математическое определение сущности числа. Тогда для более полного его понимания становятся необходимостью и аксиомы, и считалка. Действительно, данное определение сущности числа включает в себя аргументы, действия и счётную величину. Но аргументы – это тоже числа, и они должны представляться не конкретно каждое из них, а по умолчанию, т.е. в форме общепринятой и неизменной функции, которая называется системой счисления, а она-то никак уже не может появиться без такого понятия как счёт. Вот теперь уже по отношению к счёту, аксиомы оказываются весьма кстати и без них он может появиться разве только от пришельцев. Да, собственно, в действительности это так и было, поскольку такие источники знаний как «Начала» Евклида или «Арифметика» Диофанта созданы явно не нашей, а совсем другой цивилизацией>35.
Рисунок 32
Джузеппе Пеано
Если аксиомы регламентируют счёт, то они первичны по отношению к нему. Однако нет никакой надобности определять их сущность через введение новых понятий, т.к. смысл любых аксиом как раз в их изначальности т.е. они всегда по сути есть границы знаний. Таким образом, аксиомы получают ещё более основополагающий статус, чем до сих пор, когда они ограничивались лишь обоснованием какой-либо конкретной системы. В частности, система аксиом, разработанная итальянским математиком Джузеппе Пеано (Giuseppe Peano), очень близко соответствуют решению задачи построения системы счёта, хотя вот это основное их предназначение никак не разъяснялось, видимо, с намёком на обоснование сущности понятия числа. Научное сообщество воспринимало их только как некую «формализацию арифметики», совершенно не замечая, что эти аксиомы ни коим образом не отражают сущность чисел, а только создают основы для их представления по умолчанию, т.е. через счёт.