Диверсификация инвестиционного портфеля. Теория Марковица-Шарпа - страница 3



дней, а прибыль/убыток фиксирует через M дней. При этом инвестор в конце интервала получает доходность равную сумме ежедневных доходностей, хотя никакой торговли ежедневно он не вел.

Понятно, что вместо дневных цен закрытия мы можем взять какой-нибудь другой временной ряд, например, временной ряд вычисленный по часовым ценам закрытия, или по недельным ценам закрытия. Но для анализа поведения биржевых активов на дистанции от одного квартала до 20 лет чаще всего используют временные ряды доходности, вычисленные именно по дневным ценам.

Недельные и месячные цены закрытия чаще используют, когда хотят проанализировать поведение активов за много десятилетий. А часовые цены закрытия чаще используют для анализа поведения активов за несколько недель или дней.

Но это не наши случаи. Данная книга предназначена для инвесторов, которые занимаются портфельными биржевыми инвестициями с горизонтом примерно 5–20 лет. Поэтому везде далее, по умолчанию, будем считать, что рассматриваются временные ряды дневных цен закрытия и соответствующие им временные ряды дневных доходностей.

Мерой рискованности вложения в актив в теории Марковица является стандартное отклонение доходности от средней доходности за период владения. То есть величина риска S, это квадратный корень из дисперсии D доходности за период владения (см. Приложение П.4):



Здесь , это средняя доходность за период владения активом (см. Приложение П.2.3):



Обратите внимание, что существуют доходности в каждый конкретный день, и эти доходности могут не совпадать со средней доходностью за весь рассматриваемый интервал. В то время, как риск вычисляется только на интервале в несколько торговых дней (минимум 2 дня). Значит, риск уже сам по себе является средним на заданном интервале.

Но мы не будем здесь в формулах вместо буквы S обозначать риск в угловых скобках , так как у нас нет понятия риска за один торговый день. И соответственно в данной книге не применяются обозначения, типа S>m, в качестве риска в m-й день.

Это не означает, что не существует риска S>m в пределах одного торгового дня. Но такой риск не вычисляется по дневным ценам закрытия. Его можно вычислить, например, по часовым ценам закрытия внутри торгового дня. Но, как уже было сказано выше, мы минимальной единицей времени в этой книге считаем торговый день.

Чтобы у читателя сложилась правильная интуиция по теории Марковица, посмотрим очень простые синтетические примеры. Начнем с портфеля, который содержит только 2 актива.

1.2.2. Пример с двумя активами

Допустим, есть какие-то 2 актива, назовем их A и B, у которых вычислили средние доходности и риски на каком-то интервале времени.

A: Более доходный с доходностью >A = 0.2045, но и более рискованный с риском S>A = 0.083.

B: Менее доходный с доходностью >B = 0.0144, но и менее рискованный с риском S>B = 0.061.

На графике «Риск-Доходность» эти активы на рис. 5 изображены крупными синими точками. По горизонтальной оси графика отложены риски S, а по вертикальной оси средние доходности .


Рис. 5. График "Риск-Доходность для двух активов.


Оба актива на рассматриваемом интервале времени имеют свои временные ряды ежедневных доходностей:



Здесь M, это количество торговых дней, за которые анализируется поведение этих двух активов, то есть M торговых дней, это тот интервал, за который вычислены доходности и риски активов