Диверсификация инвестиционного портфеля. Теория Марковица-Шарпа - страница 4



и B.

А портфель из этих двух активов, в свою очередь, сам тоже имеет свой ряд доходностей в эти же самые M дней:



А значит, портфель, состоящий из этих активов, имеет свою среднюю доходность и свой риск на этом же интервале M дней. И мы можем на графике «Риск-Доходность» нарисовать точку, которая соответствует этому портфелю. Положение этой точки зависит от того, как инвестор распределил свои средства по активам A и B.

Если инвестор распределил свой начальный капитал по активам A и B так, что на долю своих средств W>A он купил актив A, а на долю W>B купил актив B, то этой покупкой инвестор зафиксировал количество активов A и B в своем портфеле. Так как цены этих активов могут изменяться, то в портфеле могут изменяться и доли финансов инвестора между активами A и B. Но количество купленных активов и их соотношение не меняются, так как инвестор ничего не продает из портфеля и ничего не докупает в свой портфель в течение M дней.

Так как доходность, это относительная величина и она не зависит от количества купленных активов, то доходность портфеля в m-й день линейно зависит от доходностей двух активов в m-й день с коэффициентами пропорциональности равными долям начального распределения средств инвестора по активам:



Подставив, это выражение в две последние формулы предыдущего раздела, получаем:




Здесь C>AA, C>BB и C>AB, это элементы матрицы ковариаций доходностей (см. Приложение П.5.2) активов A и B.

Как уже говорилось выше, W>A, это доля финансов, которая пошла на покупку актива A, а W>B, это доля средств, которая была вложена в актив B. Эти доли принято называть весовыми коэффициентами или просто весами активов.

Все эти веса могут меняться только в пределах от 0 до 1:



Это правило выполняется не только, когда в портфеле всего 2 актива, но и когда в портфеле любое количество активов. Если вес какого-то актива равен нулю, то это означает, что в рассматриваемом портфеле данный актив отсутствует.

В теории отрицательные веса соответствуют шортовым продажам. В данной книге такие ситуации не рассматривается, так как книга посвящена не трейдингу, а инвестированию.

Сумма всех весов обязательно всегда должна быть равна единице:



Последнее условие называется условием нормировки на единицу.

Если вес какого-то актива равен 1, значит, веса всех других активов должны быть равны 0. То есть портфель состоит только из одного актива, а все другие рассматриваемые активы в нет отсутствуют.

По диагоналям ковариационной матрицы С всегда стоят дисперсии активов. Стандартные отклонения (риски) активов, это, как раз, корни квадратные из дисперсий. Значит, формулу риска для портфеля с двумя активами можно переписать так:



Связь коэффициента корреляции Corr>AB со взаимной ковариацией C>AB следующая (см. Приложение П.5.3):



Поэтому формулу для риска портфеля из двух активов, в общем случае, можно еще переписать так:



Посмотрим, какой будет риск портфеля с этими активами в зависимости от того, как коррелируют между собой доходности этих активов.

1.2.2.1. Коэффициент корреляции Corr=1

Пусть временные ряды доходностей активов A и B очень сильно коррелируют между собой с коэффициентом корреляции Corr>AB=1.0. В этом случае в формуле для риска под квадратным корнем получаем полный квадрат, и квадратный корень извлекается. И тогда общий риск портфеля с двумя сильно коррелированными активами будет:



Получается, что для сильно коррелирующих активов риск портфеля, это просто взвешенный риск его активов. На графике «Риск-Доходность» на рис. 5 в этом случае получаем портфели на черном отрезке между точками