Энциклопедия финансового риск-менеджмента - страница 22



Таким образом, цена базисного пункта определяется следующей формулой:



где δP – цена базисного пункта облигации;

Р(r) – цена облигации номиналом 100 долл. при требуемой доходности, равной r;

Р(r – Δr) – цена облигации при требуемой доходности, равной r – Δr;

Δr = 0,0001.

Замечание

1. Изменение цены облигации номиналом 100 долл. при увеличении требуемой доходности на 1 базисный пункт практически совпадает с ценой базисного пункта этой облигации.

2. Изменение цены облигации номиналом 100 долл. при уменьшении (увеличении) требуемой доходности на х базисных пунктов при х ≤ 10 приблизительно равно произведению цены базисного пункта на число х.

Пример 1.32. Рассмотрим 6 %-ную облигацию с полугодовыми купонами, когда до погашения остается 10 лет, а требуемая доходность равна 10 %.

В данном случае



и по формуле (1.30) цена базисного пункта



Следовательно, изменение цены облигации при увеличении требуемой доходности на 8 базисных пунктов должно приблизительно равняться:



Точное значение этого изменения может быть найдено следующим образом:




Нетрудно проверить, что имеет место следующее утверждение: чем выше требуемая доходность для данной облигации, тем ниже цена базисного пункта (рис. 1.10).

Пример 1.33. Рассмотрим облигацию из примера 1.32 при требуемой доходности 6 %. В этом случае цена базисного пункта



превышает цену базисного пункта из примера 1.32.

Цена базисного пункта для портфеля облигаций находится по формуле:



где Ak – номинальная стоимость облигации k-го вида

δ>kP – цена базисного пункта облигации k-го вида при номинале 100 долл.;

N – число облигаций в портфеле.

1.13. Дюрация финансовых инструментов

Рассмотрим финансовый инструмент со следующим потоком платежей:



Если требуемая доходность при начислении процентов дважды в год равна r, то дюрацией Маколея (Macaulay duration) данного финансового инструмента называется величина



Модифицированная дюрация (modified duration) финансового инструмента определяется равенством



где D – дюрация Маколея,

r – требуемая доходность при начислении процентов дважды в год.

Имеет место следующее равенство:



т. е. производная цены финансового инструмента по требуемой доходности равна произведению модифицированной дюрации этого инструмента на его цену с обратным знаком.

Основное свойство дюрации – при малых изменениях требуемой доходности имеет место равенство



Геометрическая иллюстрация равенства (1.34) приведена на рис. 1.11.




Расчет дюрации финансового инструмента при требуемой доходности 10 % приведен в таблице:



Таким образом, дюрация Маколея финансового инструмента равна 2,155 года.

Тогда модифицированная дюрация находится следующим образом:



Если требуемая доходность увеличится на 10 базисных пунктов, то



т. е. цена финансового инструмента упадет на 0,2 %.

Если же требуемая доходность мгновенно упадет на 200 базисных пунктов, то цена финансового инструмента вырастет приблизительно на 4,104 %, так как



Точные значения относительного изменения цены финансового инструмента в этих двух случаях соответственно равны -0,002049 и 0,04222.

Дюрацию обыкновенной ренты с полугодовыми платежами можно найти по формуле:



где r – требуемая доходность (при начислении процентов дважды в год);

n – число платежей ренты.

В частности, дюрация бессрочной ренты определяется равенством



Дюрация Маколея облигации с полугодовыми купонами, когда до ее погашения остается в точности п полугодовых периодов, может быть найдена по формуле