Энциклопедия финансового риск-менеджмента - страница 24
Исходная стоимость портфеля может быть найдена следующим образом:
1.15. Приложения дюрации
1.15.1. Обмен облигаций
Предположим, что инвестор рассматривает вопрос об обмене облигации Х стоимостью V>X с модифицированной дюрацией
Выясним, каким должен быть номинал облигации Y, чтобы обмен облигации Х на облигацию Y не увеличивал подверженность инвестора процентному риску.
Если требуемая доходность облигации Х изменится на величину Δr, то соответствующее изменение стоимости этой облигации определяется равенством
Можно предположить, что на основе статистических исследований установлено, что при изменении требуемой доходности облигации Х на величину Δr требуемая доходность облигации Y изменяется на величину βΔr.
Тогда соответствующее изменение стоимости облигации Y можно найти по формуле:
где A>y – номинал облигации Y.
Обмен облигаций не будет увеличивать подверженность процентному риску, если при любом Δr
Равенство (1.43) показывает, каким должен быть номинал облигации Y, чтобы при обмене облигации Х на облигацию Y не увеличивался процентный риск.
Пример 1.39. Инвестор рассматривает вопрос об обмене облигации Х стоимостью 8 млн долл. на облигацию Y при цене P>Y = 96 долл. Модифицированные дюрации облигаций Х и Y равны 5 и 4 соответственно, а коэффициент β равен 1,6.
Чтобы при обмене не менялась подверженность процентному риску, номинал облигации Y должен удовлетворять равенству:
Таким образом, искомый номинал облигаций Y должен равняться 6 510 417.
1.15.2. Иммунизация портфеля облигаций
Предположим, что в данный (нулевой) момент времени инвестор владеет портфелем облигаций, который он собирается продать через Т лет.
Если в данный момент времени все рыночные доходности одинаковы, т. е. кривая доходности имеет ровный вид, то будущая стоимость инвестиций П>А(Т) через Т лет определяется следующим образом:
где r – рыночная доходность,
П(r) – стоимость портфеля при рыночной доходности, равной r.
Будущую стоимость П>А(Т) будем называть целевой накопленной стоимостью портфеля облигаций.
Однако если между данным моментом времени и первым процентным платежом рыночные доходности изменяются на одну и ту же величину Δr, а в дальнейшем уже меняться не будут, то будущая стоимость инвестиции П>ф(Т) через Т лет удовлетворяет равенству
Будущую стоимость П>ф(Т) будем называть фактической накопленной стоимостью портфеля облигаций.
Фактическая накопленная стоимость портфеля облигаций может оказаться выше или ниже целевой накопленной стоимости этого портфеля. Однако если временной горизонт инвестора Т совпадает с дюрацией Маколея портфеля облигаций, то фактическая накопленная стоимость портфеля никогда не будет меньше его целевой накопленной стоимости.
Пример 1.40. Рассмотрим портфель из двух облигаций с полугодовыми купонами, когда все рыночные доходности равны 6 %. Основные данные об облигациях портфеля приведены ниже в таблице:
Дюрация Маколея данного портфеля облигаций находится следующим образом:
Целевая накопленная стоимость портфеля через 4,053 года будет равна:
В таблице указаны фактические накопленные стоимости через 4,053 года при различных изменениях рыночных доходностей:
Стратегия иммунизации портфеля облигаций рассчитана на защиту портфеля облигаций от процентного риска. Эта стратегия предполагает следующие действия. В начальный момент времени формируется портфель облигаций так, чтобы дюрация Маколея этого портфеля совпадала с временным горизонтом инвестора. С годами портфель периодически пересматривается так, чтобы каждый раз дюрация Маколея совпадала с временным горизонтом инвестора.