Философия. Античные мыслители - страница 4
Часть 1
Эллинская философия: от Фалеса до Аристотеля. Теоретическое знание и рождение философии
Чтобы обнаружить исток философской проблематики, необходимо, на мой взгляд, обратиться к событию, случившемуся в Греции где-то в середине I тысячелетия до нашей эры. Это событие – рождение теоретического знания. Из разнообразных рассказов о греческих мудрецах этого времени можно видеть их бескорыстный интерес к окружающему миру. Они изучали движение светил, занимались геометрией, арифметикой, музыкой. Результаты, полученные в ходе этих ученых занятий, возможно, не превосходили достижений их восточных коллег. Астрономия вавилонян и геометрия египтян выглядит более развитой. Однако греческая наука обладала, по-видимому, с самого начала одной особенностью. В Вавилоне движение светил исследовалось ради астрологических предсказаний. В Египте геометрия изучалась преимущественно для нужд строительства, а также, возможно, для разметки полей. Арифметика была важна при хозяйственных и торговых расчетах. Греки, позаимствовав значительную часть своих знаний у египетских и халдейских мудрецов, отнеслись к этим знаниям несколько иначе. Они стали для них предметом бескорыстного интереса. Они сочли важным заниматься этими науками, не ожидая никаких практических результатов, а из любви к истине. Особенность греческой мудрости, в отличие от мудрости восточной, состояла в том, что знание было ценно само по себе. Оно представляло собой не свод практических рекомендаций, а незаинтересованное созерцание, имеющее в самом себе награду для созерцающего.
По-видимому, основным свойством такого созерцания должна быть ясность. Ход и взаимное расположение светил, свойства и отношения чисел или геометрических величин должны предстать уму в рамках завершенной, разом созерцаемой целостности. Поэтому теоретическое познание ориентировано не на добывание фактов, а на движение вглубь к скрытым свойствам, к прояснению невидимых пока деталей, которые бы позволили эту целостность обнаружить.
Именно поэтому теоретическое знание не может быть догматическим. Если предмет предназначен для использования, нам нужно знать о нем ровно столько, сколько нужно для использования. В этом случае нас не интересует происхождение знания. Нам не важны глубинные свойства предмета, его сущность и связи с другими предметами, не имеющими отношения к нашему делу. Нам будет достаточно, если кто-то, обладающий авторитетом, сообщит нам полезные сведения. Избыточное знание лишь затруднит нашу практику.
Знание, не обремененное практическими требованиями, может позволить себе такую избыточность. Оно должно содержать понимание предмета в его максимальной глубине. Теоретическая наука устремлена к тому, что есть ее предмет поистине, к сущности предмета. Целью познания является ясность, т. е. представление вещи в ее непосредственной данности, как она есть, независимо от всяких субъективных обстоятельств вроде полезности, практической целесообразности и т. п.
Интересным результатом такого подхода к знанию следует, по-видимому, считать появление математических доказательств. Ни в Вавилоне, ни в Египте не считали, что свойства фигур и чисел необходимо доказывать. Практическая ценность математических положений обнаруживается без всяких доказательств. Но сформулированное и не доказанное положение является догмой. Его можно принять и использовать. Однако оно остается непонятным, содержит в себе какую-то нераскрытую тайну, известную лишь посвященным. Практику эта тайна неинтересна, ему не нужно понимание, его интересует лишь возможное применение. Не исключено, что именно так относились к геометрическому знанию в Египте. Математическое положение, известное ныне как теорема Пифагора, хорошо зарекомендовало себя при строительстве. Возможно, оно было сообщено строителям жрецами, носителями тайного знания, связанными с богами. Но ясное понимание этого положения возникает в стороне от его практической значимости. Оно приходит тогда, когда, нарисовав квадраты на сторонах треугольника, мы после нескольких дополнительных построений собственными глазами видим, что два из них равны третьему. Так рождается понимание. Тем, кто занимается математикой и в наше время, наверное, хорошо знакомо то чувство неясности, неопределенности, которое возникает, если математическое положение не доказано. Недоказанная теорема непонятна. Лишь доказательство позволяет увидеть существо дела, превращает скрытую связь понятий в очевидную.